Implementation of a test bench for remote practices in Power Electronics

Authors

  • Sergio Andres Diaz Carmona Universidad de Antioquia
  • Orlando Carrillo Perilla Universidad de Antioquia
  • Andrés Felipe Sánchcez Prisco Universidad de Antioquia
  • Melisa De Jesús Barrera Durango Universidad de Antioquia

DOI:

https://doi.org/10.33131/24222208.376

Keywords:

Hardware, IoT, Open source, Power electronics, Low cost, Internet of Things, low-cost electronics

Abstract

This article presents a test bench's design and manufacturing phases that allow remote practices to be carried out in a power electronics course. It is based on a conceptual design with a proposed general system scheme. The function of each of its stages is defined, such as the Internet of Things (IoT) based interface, the local server, the control card, and the practice modules. Also, Open-source tools were chosen for user interfaces, hardware topologies, and components. After this, the electronic boards were developed using the student version of computer-aided design (CAD) software for their manufacture and assembly. At last, the software tools and services necessary for communication with the control card and the practice modules were implemented: phase control, speed control of an industrial-type DC motor, and a Buck-type DC-DC converter with variable load.

Downloads

Download data is not yet available.

References

F. Y. Limpraptono, E. Nurcahyo, y A. Faisol, «The Development of Electronics Telecommunication Remote Laboratory Architecture Based on Mobile Devices», Int. J. Online Biomed. Eng. IJOE, vol. 17, n.o 03, p. 26, mar. 2021, doi: 10.3991/ijoe.v17i03.20179.

A. Adda Benattia, M. Moussa, A. Benachenhou, y A. Mebrouka, «Design of a Low Cost Switching Board Enabling a Reconfigurable Remote Experiment», Int. J. Online Biomed. Eng. IJOE, vol. 15, n.o 12, p. 32, ago. 2019, doi: 10.3991/ijoe.v15i12.10650.

A. Kalashnikov, H. Zhang, J. Jennings, y M.-M. Abramriuk, «Remote laboratory : using Internet-of-Things ( IoT ) for E-learning», en PROCEEDINGS OF THE V INTERNATIONAL SCIENTIFIC CONFERENCE ADVANCED INFORMATION SYSTEMS AND TECHNOLOGIES, Sumy, Ucrania, 2017, pp. 43-46. [En línea]. Disponible en: http://shura.shu.ac.uk/15845/

J. Garcia-Zubia et al., «Empirical Analysis of the Use of the VISIR Remote Lab in Teaching Analog Electronics», IEEE Trans. Educ., vol. 60, n.o 2, pp. 149-156, may 2017, doi: 10.1109/TE.2016.2608790.

F. Garcia-Loro, E. Sancristobal, G. Diaz, y M. Castro, «Remote Laboratories Integration into Electronics Engineer Curricula», en 2018 IEEE World Engineering Education Conference (EDUNINE), Buenos Aires, mar. 2018, pp. 1-6. doi: 10.1109/EDUNINE.2018.8450972.

V. Ansal, V. K. Remya, V. K. Jagadeesh, y K. Prabu, «Remote Triggered Laboratory for Boost Converter Using LabVIEW», en Advances in Automation, Signal Processing, Instrumentation, and Control, vol. 700, V. L. N. Komanapalli, N. Sivakumaran, y S. Hampannavar, Eds. Singapore: Springer Nature Singapore, 2021, pp. 2027-2035. doi: 10.1007/978-981-15-8221-9_188.

E. V. Komarov y A. N. Savin, «Plug-in board for National Instruments ELVIS II platform that allows to design Brushless Direct Current motor control systems», en 2011 Proceedings of the 34th International Convention MIPRO, 2011, pp. 797-799.

A. Fernandez-Pacheco, S. Martin, y M. Castro, «Implementation of an Arduino Remote Laboratory with Raspberry Pi», en 2019 IEEE Global Engineering Education Conference (EDUCON), Dubai, United Arab Emirates, abr. 2019, pp. 1415-1418. doi: 10.1109/EDUCON.2019.8725030.

D. D. Amaudov y E. O. Dudin, «Distance Learning and Remote Laboratory Exercises on Power Supply Systems», en 2020 XI National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, jul. 2020, pp. 1-4. doi: 10.1109/ELECTRONICA50406.2020.9305156.

A. S. Hatem y J. K. Abed, «Design of Patient Health Monitoring Using ESP8266 and Adafruit IO Dashboard», en 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, jul. 2022, pp. 1-6. doi: 10.1109/ICECET55527.2022.9872787.

A. I. Rokade, A. D. Kadu, y K. S. Belsare, «An Autonomous Smart Farming System for Computational Data Analytics using IoT», J. Phys. Conf. Ser., vol. 2327, n.o 1, p. 012019, ago. 2022, doi: 10.1088/1742-6596/2327/1/012019.

P. Francis-Mezger y V. M. Weaver, «A raspberry pi operating system for exploring advanced memory system concepts», en Proceedings of the International Symposium on Memory Systems, Alexandria Virginia USA, oct. 2018, pp. 354-364. doi: 10.1145/3240302.3240311.

C. W. Zhao, J. Jegatheesan, y S. C. Loon, «Exploring IOT Application Using Raspberry Pi», Int. J. Comput. Netw. Appl., vol. 2, n.o 1, pp. 27-34, 2015.

M. Lekic y G. Gardasevic, «IoT sensor integration to Node-RED platform», en 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, mar. 2018, pp. 1-5. doi: 10.1109/INFOTEH.2018.8345544.

N. A. Yalcin y F. Vatansever, «A web-based virtual power electronics laboratory: A WEB-BASED VIRTUAL POWER ELECTRONICS LABORATORY», Comput. Appl. Eng. Educ., vol. 24, n.o 1, pp. 71-78, ene. 2016, doi: 10.1002/cae.21673.

Published

2023-01-31

How to Cite

Diaz Carmona, S. A., Carrillo Perilla, O., Sánchcez Prisco, A. F., & Barrera Durango, M. D. J. (2023). Implementation of a test bench for remote practices in Power Electronics. Revista CINTEX, 27(2), 57–67. https://doi.org/10.33131/24222208.376
Crossref Cited-by logo

Some similar items: