IoT-based wireless system for the measurement of temperature and speed in an induction motor

Authors

  • Samir Correa Esquivia Estudiante de maestría
  • Andres Felipe Sanchez Prisco
  • Johnatan Mauricio Rodríguez Serna
  • Melisa de Jesus Barrera Durando

DOI:

https://doi.org/10.33131/24222208.375

Keywords:

Induction motor, embedded systems, wireless network, IoT, monitoring, open source

Abstract

Induction motors are electrical machines widely used in different industrial processes due to some characteristics, such as their robustness and efficiency. Its use in essential and complex processes within production lines requires the implementation of monitoring and supervision systems to guarantee its safe, continuous, and reliable operation. The remote control, monitoring, and supervision systems of induction motors must allow the integration of different automation equipment and must also be scalable and flexible. Additionally, said systems should enable the acquisition of critical variables, such as temperature and speed, which allow real-time estimations of the motor operating conditions and the development of diagnoses and forecasts of fault conditions. This article presents a novel alternative for implementing a temperature and speed monitoring system for induction motors with the above characteristics and based on IoT technologies. The communication between the devices that make up the proposed monitoring system is performed through the LoRa communication standard. The local server is implemented using a Raspberry Pi, which, in turn, allows this information to be sent to an IoT platform in the cloud. Two cards were designed to acquire the temperature and speed signals with PIC16F1827 microprocessors and a DIP Switch for assigning addresses. The user interface is implemented using the Node-RED tool. Finally, the information management in the cloud is done through an open-source server that implements the MQTT protocol. Results of some tests are shown in which the adequate performance of the proposed system is verified, and the potentialities are presented, not only for monitoring several electrical and mechanical variables but also for diagnosing and managing induction motors. The system obtained is quite functional, scalable, and flexible in its topology. It allows the integration of different equipment and multi-brand devices at a lower cost than other commercial devices. Additionally, the proposed system is decentralized and based on open-source technologies.

Downloads

Download data is not yet available.

References

E. García Moreno, Automatización de procesos industriales: robótica y automática. Valencia: Universidad Politécnica de Valencia, Servicio de Publicaciones, 2020.

J. Novillo-Vicuña, D. Hernández Rojas, B. Mazón Olivo, J. Molina Ríos, y O. Cárdenas Villavicencio, Arduino y el Internet de las cosas. Editorial Científica 3Ciencias, 2018.

N. Mohan, T. M. Undeland, y W. P. Robbins, Electrónica de potencia: convertidores, aplicaciones y diseño, 3a. ed. México: McGraw Hill, 2009.

J. D. J. Vargas Ortega y C. M. Moreno Paniagua, «Resultados de la implementación de módulo embebido de conversión de tensiones en motores trifásicos», Rev. CINTEX, vol. 26, n.o 2, pp. 22-30, dic. 2021, doi: https://doi.org/10.33131/24222208.377

P. S. Huynh, D. Ronanki, D. Vincent, y S. S. Williamson, «Direct AC–AC Active-Clamped Half-Bridge Converter for Inductive Charging Applications», IEEE Trans. Power Electron., vol. 36, n.o 2, pp. 1356-1365, feb. 2021, doi: 10.1109/TPEL.2020.3009395.

G. Petrauskas y G. Svinkunas, «Application of Single-Phase Supply AC-DC-AC VFD for Power Factor Improvement in LED Lighting Devices Loaded Power Distribution Lines», Appl. Sci., vol. 12, n.o 12, p. 5955, jun. 2022, doi: 10.3390/app12125955.

V. Sousa Santos, J. J. Cabello Eras, A. Sagastume Gutierrez, y M. J. Cabello Ulloa, «Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring», Measurement, vol. 136, pp. 237-247, mar. 2019, doi: 10.1016/j.measurement.2018.12.080.

A. Florián, «Comparación de desempeño de observadores de estado en sistemas lineales con aplicación a un motor de corriente continua», Rev. CINTEX, vol. 23, n.o 1, pp. 51-59, oct. 2018, doi: https://doi.org/10.33131/24222208.310

Y. P. Alcazar Oviedo y others, «Monitoreo de motores de inducción trifásico a través de las corrientes eléctricas de alimentación», Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia, 2021. [En línea]. Disponible en: https://repositorio.utb.edu.co/handle/20.500.12585/10283

C. A. Coba Guanochanga y C. M. Tenorio Chango, «Diseño e implementación de un sistema de monitoreo, para el análisis dinámico de un motor eléctrico asíncrono trifásico de 3 HP, en el Laboratorio de Control Eléctrico de la Universidad de las Fuerzas Armadas ESPE Extensión Latacunga», Bachelor THesis, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador, 2019. [En línea]. Disponible en: http://repositorio.espe.edu.ec/xmlui/handle/21000/15649?locale-attribute=en

S. Ruiz Álvarez y J. J. Espinosa, «Control de potencia y velocidad de rotación de un aerogenerador usando controladores predictivos», Rev. CINTEX, vol. 23, n.o 1, pp. 60-76, oct. 2018, doi: https://doi.org/10.33131/24222208.311

J. M. Duarte-Carvajalino, O. O. Guerrero-Díaz, y C. A. Carvajal-Labastida, «Estimación de los parámetros de motores de inducción a partir de las medidas de pérdidas de potencia», Rev. UIS Ing., vol. 18, n.o 3, pp. 176-182, abr. 2019, doi: 10.18273/revuin.v18n3-2019018.

L. D. Murillo-Soto, C. Calderón-Arce, y G. Figueroa-Mata, «Detección de faltas en motores eléctricos con base en índices de potencias y redes neuronales», Rev. Tecnol. En Marcha, vol. 31, n.o 1, p. 81, mar. 2018, doi: 10.18845/tm.v31i1.3499.

C. E. Jacobo Ruiz, F. A. Peralta León, M. A. Rodríguez Blanco, I. Duran, y J. L. Vázquez Ávila, «AUTOMATIZACIÓN DE UN BANCO DE PRUEBAS PARA EXTRACCIÓN DE PARÁMETROS DE UN MOTOR DE INDUCCIÓN (AUTOMATED TEST BENCH TO EXTRACT THE PARAMETERS OF AN INDUCTION MOTOR)», Pist. Educ., vol. 40, n.o 130, pp. 638-655, 2018.

C. O. Arreaga Villavicencio, «Diseño de un sistema de monitoreo y alerta de temperatura para motores industriales utilizando tecnología Zigbee», Bachelor Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2019. [En línea]. Disponible en: http://repositorio.ug.edu.ec/handle/redug/46678

K. Mykoniatis, «A Real-Time Condition Monitoring and Maintenance Management System for Low Voltage Industrial Motors Using Internet-of-Things», Procedia Manuf., vol. 42, pp. 450-456, 2020, doi: 10.1016/j.promfg.2020.02.050.

A. Lekbich, A. Belfqih, C. Zedak, J. Boukherouaa, y F. El Mariami, «A secure wireless control of Remote Terminal Unit using the Internet of Things in smart grids», en 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakesh, Morocco, oct. 2018, pp. 1-6. doi: 10.1109/WINCOM.2018.8629620.

H. Barksdale, Q. Smith, y M. Khan, «Condition Monitoring of Electrical Machines with Internet of Things», en SoutheastCon 2018, St. Petersburg, FL, abr. 2018, pp. 1-4. doi: 10.1109/SECON.2018.8478989.

A. Cano-Ortega y F. Sánchez-Sutil, «Monitoring of the Efficiency and Conditions of Induction Motor Operations by Smart Meter Prototype Based on a LoRa Wireless Network», Electronics, vol. 8, n.o 9, p. 1040, sep. 2019, doi: 10.3390/electronics8091040.

V. C. Khairnar y K. Sandeep K, «Induction Motor Parameter Monitoring System using Zig bee Protocol & MATLAB GUI : Automated Monitoring System», en 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, feb. 2018, pp. 1-6. doi: 10.1109/AEEICB.2018.8480992.

L. Magadán, F. J. Suárez, J. C. Granda, y D. F. García, «Low-cost real-time monitoring of electric motors for the Industry 4.0», Procedia Manuf., vol. 42, pp. 393-398, 2020, doi: 10.1016/j.promfg.2020.02.057.

W. Z. Cabral, L. F. Sikos, y C. Valli, «Shodan Indicators Used to Detect Standard Conpot Implementations and Their Improvement Through Sophisticated Customization», en 2022 IEEE Conference on Dependable and Secure Computing (DSC), Edinburgh, United Kingdom, jun. 2022, pp. 1-7. doi: 10.1109/DSC54232.2022.9888911.

C. Hernandez, D. Velez, y J. A. Isaza, «Diseño de una plataforma de prueba de sensores virtuales para el sistema glucosa-insulina de pacientes UCI usando la técnica HIL», Rev. CINTEX, vol. 23, n.o 2, pp. 61-75, dic. 2018, doi: https://doi.org/10.33131/24222208.318

D. Dinculeană y X. Cheng, «Vulnerabilities and Limitations of MQTT Protocol Used between IoT Devices», Appl. Sci., vol. 9, n.o 5, p. 848, feb. 2019, doi: 10.3390/app9050848.

Sistema para la adquisición velocidad angular del rotor.

Published

2023-01-31

How to Cite

Correa Esquivia, S., Sanchez Prisco, A. F., Rodríguez Serna, J. M., & Barrera Durando, M. de J. (2023). IoT-based wireless system for the measurement of temperature and speed in an induction motor. Revista CINTEX, 27(2), 32–42. https://doi.org/10.33131/24222208.375
Crossref Cited-by logo