Nonlinear model predictive control for batch processes using set-theory

Authors

DOI:

https://doi.org/10.33131/24222208.366

Keywords:

Conjunto alcanzable, Conjunto controlable, Trayectoria de Referencia Controlable, Conjunto de Trayectorias Controlables, Robustez, Control Predictivo, MPC

Abstract

The control problem of Batch Processes presents many challenges. In general, it must deal with the irreversible behaviour of state variables, limited corrective actions, and sensitivity regarding disturbances. In this paper, the Controllable Trajectory Set is applied to a Nonlinear Model Predictive Control to improve the control performance of Batch Processes. The main capability of the proposed controller is to operate over a safe trajectory and away from constraints by incorporating the Controllable Trajectory Set. When the optimization problem solution is feasible, it is possible to ensure the end batch point. Additionally, the Nonlinear Model Predictive Control uses Controllable Reference Trajectory as the desired trajectory to improve robustness. Controller characteristics are illustrated using a semibatch process under a disturbance scenario. The proposed scheme decreases the control indexes under the disturbance scenario, assuring the main control objectives.

Downloads

Download data is not yet available.

References

C. A. Gómez, L. M. Gómez, y H. D. Alvarez, «An approach to stability and controllability analysis in batch processes using set theory methods», en 2010 IEEE ANDESCON Conference Proceedings, ANDESCON 2010, 2010. doi: 10.1109/ANDESCON.2010.5633227.

D. Bonvin, B. Srinivasan, y D. Hunkeler, «Control and optimization of batch processes», IEEE Control Syst., vol. 26, n.o 6, pp. 34-45, dic. 2006, doi: 10.1109/MCS.2006.252831.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, y P. O. M. Scokaert, «Constrained model predictive control: Stability and optimality», Automatica, vol. 36, n.o 6, pp. 789-814, 2000, doi: 10.1016/S0005-1098(99)00214-9.

D. L. Marruedo, T. Alamo, y E. F. Camacho, «Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties», en Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Las Vegas, NV, USA, 2002, vol. 4, pp. 4619-4624. doi: 10.1109/CDC.2002.1185106.

E. C. Kerrigan y J. M. Maciejowski, «Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control», en Proceedings of the 39th IEEE Conference on Decision and Control, 2000, vol. 5, pp. 4951-4956. doi: 10.1109/CDC.2001.914717.

F. Valencia, J. D. López, J. A. Patiño, y J. J. Espinosa, «Bargaining Game Based Distributed MPC», en Distributed Model Predictive Control Made Easy, vol. 69, J. M. Maestre y R. R. Negenborn, Eds. Springer Netherlands, 2014, pp. 41-56. [En línea]. Disponible en: http://dx.doi.org/10.1007/978-94-007-7006-5_2

E. F. Camacho y C. Bordons, Model Predictive Control. Springer Science & Business Media, 2013.

C. Ocampo-Martinez, Model Predictive Control of Wastewater Systems. London: Springer London, 2010. doi: 10.1007/978-1-84996-353-4.

S. Ruiz Álvarez y J. J. Espinosa, «Control de potencia y velocidad de rotación de un aerogenerador usando controladores predictivos», Rev. Cintex, vol. 23, n.o 1, pp. 60-76, oct. 2018, doi: 10.33131/24222208.311.

Z. K. Nagy y R. D. Braatz, «Robust nonlinear model predictive control of batch processes», AIChE Journal, vol. 49, n.o 7, pp. 1776-1786, jul. 2003, doi: 10.1002/aic.690490715.

S. Aumi y P. Mhaskar, «Safe-steering of batch process systems», AIChE Journal, vol. 55, n.o 11, pp. 2861-2872, 2009, doi: 10.1002/aic.11920.

C. A. Gómez-Pérez, L. M. Gómez, y H. Alvarez, «Reference Trajectory Design Using State Controllability for Batch Processes», Ind. Eng. Chem. Res., vol. 54, n.o 15, pp. 3893-3903, abr. 2015, doi: 10.1021/ie504809x.

B. Srinivasan, S. Palanki, y D. Bonvin, «Dynamic optimization of batch processes: I. Characterization of the nominal solution», Computers & Chemical Engineering, vol. 27, n.o 1, pp. 1-26, ene. 2003, doi: 10.1016/S0098-1354(02)00116-3.

K. S. Lee, I.-S. Chin, H. J. Lee, y J. H. Lee, «Model predictive control technique combined with iterative learning for batch processes», AIChE Journal, vol. 45, n.o 10, pp. 2175-2187, oct. 1999, doi: 10.1002/aic.690451016.

J. Flores-Cerrillo y J. F. MacGregor, «Latent variable MPC for trajectory tracking in batch processes», Journal of Process Control, vol. 15, n.o 6, pp. 651-663, sep. 2005, doi: 10.1016/j.jprocont.2005.01.004.

A. H. González, E. J. Adam, D. Odloak, y J. L. Marchetti, «Infinite horizon MPC applied to batch processes. Part I», en XIIIo Reunión de Trabajo en Procesamiento de la Información y Control (RPIC), Rosario, Argentina, 2009. doi: 10.13140/2.1.3504.7684.

A. González, E. J. Adam, D. Odloak, y J. Marchetti, «Infinite Horizon MPC applied to batch processes. Part II», en XIIIo Reunión de Trabajo en Procesamiento de la Información y Control (RPIC), Rosario, Argentina, 2009. Accedido: 20 de mayo de 2022. [En línea]. Disponible en: https://www.researchgate.net/publication/265761706_Infinite_horizon_MPC_applied_to_batch_processes_Part_II

L. M. Gómez, H. Botero, y H. Alvarez, «Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante Teoría de Conjuntos», Revista Iberoamericana de Automática e Informática Industrial, vol. 12, n.o 2, pp. 145-153, 2015, doi: j.riai.2015.02.002.

C. A. Gómez, L. M. Gómez, y H. D. Alvarez, «An approach to stability and controllability analysis in batch processes using set theory methods», en 2010 IEEE ANDESCON, sep. 2010, pp. 1-6. doi: 10.1109/ANDESCON.2010.5633227.

E. D. Sontag, Mathematical Control Theory, vol. 6. New York, NY: Springer New York, 1998. doi: 10.1007/978-1-4612-0577-7.

B. Srinivasan y D. Bonvin, «Controllability and stability of repetitive batch processes», Journal of Process Control, vol. 17, n.o 3, pp. 285-295, mar. 2007, doi: 10.1016/j.jprocont.2006.10.009.

F. Blanchini y S. Miani, Set-Theoretic Methods in Control. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-17933-9.

J. M. Bravo, T. Alamo, y E. F. Camacho, «Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets», Automatica, vol. 42, n.o 10, pp. 1745-1751, oct. 2006, doi: 10.1016/j.automatica.2006.05.003.

C. A. Gomez-Perez y L. M. Gomez, «Controllable Reference Trajectory Applied to Batch Process Control», en 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, oct. 2019, pp. 1-6. doi: 10.1109/CCAC.2019.8921384.

S. Aumi y P. Mhaskar, «Robust model predictive control and fault handling of batch processes», AIChE J., vol. 57, n.o 7, pp. 1796-1808, jul. 2011, doi: 10.1002/aic.12398.

A. Marquez-Ruiz, M. Loonen, M. B. Saltık, y L. Özkan, «Model Learning Predictive Control for Batch Processes: A Reactive Batch Distillation Column Case Study», Ind. Eng. Chem. Res., vol. 58, n.o 30, pp. 13737-13749, jul. 2019, doi: 10.1021/acs.iecr.8b06474.

J. M. Bravo, D. Limon Marruedo, T. Alamo, y E. F. Camacho, «On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach», Automatica, vol. 41, n.o 9, pp. 1583-1589, sep. 2005, doi: 10.1016/j.automatica.2005.04.015.

G. Calafiore, F. Dabbene, y R. Tempo, «Randomized algorithms in robust control», en 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Maui, Hawaii, USA, 2003, vol. 2, pp. 1908-1913. doi: 10.1109/CDC.2003.1272894.

M. Vidyasagar, «Statistical learning theory and randomized algorithms for control», Control Systems, IEEE, vol. 18, n.o 6, pp. 69-85, 1998.

Controllable Trajectory Set

Downloads

Published

2021-07-03

How to Cite

Gómez Pérez, C. A., Gómez Echavarría, L. M., & Alvarez, H. D. (2021). Nonlinear model predictive control for batch processes using set-theory. Revista CINTEX, 26(1), 13–23. https://doi.org/10.33131/24222208.366

Issue

Section

RESEARCH PAPERS
Crossref Cited-by logo