Application of Machine Learning in precision agriculture

Authors

  • Carlos Alejandro Ramirez-Gomez SENA

DOI:

https://doi.org/10.33131/24222208.356

Keywords:

Machine Learning, Smart Agriculture, KNN, Accuracy Score, Decision Tree

Abstract

This article proposes a Machine Learning model to predict the state of the harvest from information on the consumption of pesticides and other crop variables. A machine learning methodology is followed, which consists of four steps. At first, a stage of preprocessing and analysis of information, and separation of training, test, and validation data. The final stages include the selection of models and evaluation of hyperparameters of the model from a metric. For this, five classification models are proposed, and the accuracy score is taken as a metric for evaluation. As a result, the hyperparameters for every model are obtained, and the best-performing model is selected.

Downloads

Download data is not yet available.

References

R. Katarya, A. Raturi, A. Mehndiratta, y A. Thapper, «Impact of Machine Learning Techniques in Precision Agriculture»,Proc. 3rd Int. Conf. Emerg. Technol. Comput. Eng. Mach. Learn. Internet Things ICETCE 2020, n.o February, pp. 18-23,2020, doi: 10.1109/ICETCE48199.2020.9091741.

U. L. C. Baldos, K. O. Fuglie, y T. W. Hertel, «The research cost of adapting agriculture to climate change: A global analysis to 2050», Agric. Econ., vol. 51, n.o 2, pp. 207-220, mar. 2020, doi: 10.1111/agec.12550.

C. A. Amaya Corredor, C. H. Contreras, N. Pedroza Rosas, y R. S. Cáceres Quintero, «Estrategias de adaptación y mitigación al cambio climático de las Unidades Tecnológicas de Santander», Rev. CINTEX, vol. 22, n.o 2, pp. 89-109, dic.2017, doi: https://doi.org/10.33131/24222208.301.

J. J. Castro-Maldonado, J. A. Patiño-Murillo, A. E. Florian-Villa, y O. E. Guadrón-Guerrero, «Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector», J.Phys. Conf. Ser., vol. 1126, p. 012022, nov. 2018, doi: 10.1088/1742-6596/1126/1/012022.

F. A. González, J. J. Gómez, y D. F. Amaya, «Procesamiento de imágenes multiespectrales en cultivos de café y cacao», vol.22, n.o 2. pp. 57-67, 2017. doi: https://doi.org/10.33131/24222208.294.

C. Lau, A. Jarvis, y J. Ramirez, «Agricultura Colombiana: Adaptación al Cambio Climático», CIAT - Cent. Int. Agric. Trop.,vol. 1, p. 4, 2011.

A. Chlingaryan, S. Sukkarieh, y B. Whelan, «Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review», Comput. Electron. Agric., vol. 151, pp. 61-69, ago. 2018, doi: 10.1016/j.compag.2018.05.012.

J. Patiño, J. D. López, y J. Espinosa, «Sensitivity Analysis of Frequency Regulation Parameters in Power Systems with Wind Generation», en Advanced Control and Optimization Paradigms for Wind Energy Systems, vol. 172, R.-E. Precup, T. Kamal, y S. Zulqadar Hassan, Eds. New York, NY: Springer New York, 2019, pp. 67-87. doi: 10.1007/978-981-13-5995-8_3.

M. I. Ardila Marín, W. Orozco Murillo, O. J. Galeano Echeverri, and A. M. Medina Escobar, “Desarrollo de software para la gestión del mantenimiento en los laboratorios de la I.U. Pascual Bravo,” Rev. CINTEX, vol. 23, no. 1, pp. 43–50, Oct. 2018, doi: 10.33131/24222208.307.

R. Shirsath, N. Khadke, D. More, P. Patil, y H. Patil, «Agriculture decision support system using data mining», Proc. 2017 Int. Conf. Intell. Comput. Control I2C2 2017, vol. 2018-January, pp. 1-5, 2018, doi: 10.1109/I2C2.2017.8321888.

S. Umadevi y K. S. J. Marseline, «A survey on data mining classification algorithms», Proc. IEEE Int. Conf. Signal Process. Commun. ICSPC 2017, vol. 2018-January, n.o July, pp. 264-268, 2018, doi: 10.1109/CSPC.2017.8305851.

Scikit-learn, «Scikit-learn user guide - Release 0.23.2», 2020.

C. A. Duarte-Salazar, A. E. Castro-Ospina, M. A. Becerra, y E. Delgado-Trejos, «Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview», IEEE Access, vol. 8, pp. 15983-15999, 2020, doi: 10.1109/ACCESS.2020.2967178.

Scikit-learn, «sklearn.naive_bayes», 2020.

C. V. Classification et al., «sklearn.svm», 2020. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

G. Brookes y P. Barfoot, «Environmental impacts of genetically modified (GM) crop use 1996-2016: Impacts on pesticide use and carbon emissions», GM Crops Food, vol. 9, n.o 3, pp. 109-139, jul. 2018, doi: 10.1080/21645698.2018.1476792.

F. Hoyos Gómez, J. D. Betancur Gómez, D. Osorio Patiño, y J. G. Ardila Marín, «Construcción de curvas de factor de concentración de esfuerzos por medio de simulaciones», Rev. CINTEX, vol. 21, n.o 1, jun. 2016, Accedido: dic. 19, 2019.[En línea]. Disponible en: https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/8

Y.-W. Chung, B. Khaki, T. Li, C. Chu, y R. Gadh, «Ensemble machine learning-based algorithm for electric vehicle user behavior prediction», Appl. Energy, vol. 254, p. 113732, nov. 2019, doi: 10.1016/j.apenergy.2019.113732.

Scikit-learn, «sklearn.ensemble.AdaBoostClassifier», Scikit-learn, 2020. https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

Published

2020-12-31

How to Cite

Ramirez-Gomez, C. A. (2020). Application of Machine Learning in precision agriculture. Revista CINTEX, 25(2), 14–27. https://doi.org/10.33131/24222208.356

Issue

Section

RESEARCH PAPERS
Crossref Cited-by logo