Real-time home monitoring system of carbon monoxide as an application of internet of things

Authors

  • Julio Cesar Martínez Zarate Institución Universitaria Pascual Bravo
  • Oscar Alonso Durango Román Institución Universitaria Pascual Bravo

DOI:

https://doi.org/10.33131/24222208.335

Keywords:

Arduino Uno, Message Broker Architecture, Internet of Things, MQTT protocol, Emerging technologies

Abstract

This paper presents the design of a real-time, low-cost monoxide (CO) monitoring system as a home application to the Internet of Things (IoT). At first, the research of concepts related to the realization of the system is carried out. Then, the implementation of a prototype is done using emerging technologies for backend and front end, such as C++, Spring Boot, ReatJS, Bootstrap material design, Eclipse Paho with MQTT protocol MQTT on Docker container, MySQL. The prototype employs a message broker architecture with the use of the Publish / Subscribe pattern. An Arduino device is connected (through an API) with an MQTT client, sending information to be captured with the Broker server. A client in a web browser can access from anywhere in the world and watch real-time information on any device. The performance tests were applied with the prototype for the measurement of CO at home, focused on sending send alerts (via e-mail and push notifications) when the levels reach a maximum established limit tolerable by people. This paper focuses on software tools.

Downloads

Download data is not yet available.

Author Biography

Julio Cesar Martínez Zarate, Institución Universitaria Pascual Bravo

Candidato a magister en ingeniería con énfasis en arquitectura de software, ingeniero de sistemas, tecnólogo en desarrollo de software y espec. tecnológico en gestión de bases de datos. Con más de 6 años de experiencia en el campo del desarrollo de software y 2 años en redes y servidores.

References

S. Madakam, R. Ramaswamy, y S. Tripathi, «Internet of Things (IoT): A Literature Review», J. Comput. Commun., vol. 03, n.o 05, pp. 164-173, 2015, doi: 10.4236/jcc.2015.35021.

J. Gubbi, R. Buyya, S. Marusic, y M. Palaniswami, «Internet of Things (IoT): A vision, architectural elements, and future directions», Future Gener. Comput. Syst., vol. 29, n.o 7, pp. 1645-1660, sep. 2013, doi: 10.1016/j.future.2013.01.010.

J. J. Castro-Maldonado, J. A. Patiño-Murillo, A. E. Florian-Villa, y O. E. Guadrón-Guerrero, «Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector», J. Phys. Conf. Ser., vol. 1126, p. 012022, nov. 2018, doi: 10.1088/1742-6596/1126/1/012022.

S. P. Brydon y I. Singh, Web services message broker architecture. Google Patents, 2010.

V. Pimentel y B. G. Nickerson, «Communicating and Displaying Real-Time Data with WebSocket», IEEE Internet Comput., vol. 16, n.o 4, pp. 45-53, jul. 2012, doi: 10.1109/MIC.2012.64.

J. Téllez, A. Rodríguez, y Á. Fajardo, «Contaminación por monóxido de carbono: un problema de salud ambiental», Rev. Salud Pública, vol. 8, n.o 1, pp. 108–117, 2006.

A. Macker, A. K. Shukla, S. Dey, y J. Agarwal, «ARDUINO Based LPG Gas Monitoring … Automatic Cylinder Booking with Alert System», en 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, 2018, pp. 1209-1212, doi: 10.1109/ICOEI.2018.8553840.

N. David, A. Chima, A. Ugochukwu, y E. Obinna, «Design of a home automation system using arduino», Int. J. Sci. Eng. Res., vol. 6, n.o 6, pp. 795–801, 2015.

N. S. Kumar, B. Vuayalakshmi, R. J. Prarthana, y A. Shankar, «IOT based smart garbage alert system using Arduino UNO», en 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 1028-1034, doi: 10.1109/TENCON.2016.7848162.

H. Chishiro, Y. Tsuchiya, Y. Chubachi, M. S. Abu Bakar, y L. C. De Silva, «Global PBL for Environmental IoT», en Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government, New York, NY, USA, 2017, pp. 65–71, doi: 10.1145/3108421.3108437.

P. Webb et al., «Spring boot reference guide», Part IV Spring Boot Featur., vol. 24, 2013.

C. Hernandez, D. Velez, y J. A. Isaza, «Diseño de una plataforma de prueba de sensores virtuales para el sistema glucosa-insulina de pacientes UCI usando la técnica HIL», Rev. CINTEX, vol. 23, n.o 2, pp. 61-75, dic. 2018, doi: 10.33131/24222208.318.

E. D. Aguirre Mesa, D. A. Garcia Arango, y C. F. Henao Villa, «Diseño y simulación de un amplificador “Instrumental Operacional” como apoyo en la lectura y transmisión de señales mioeléctricas por un solo canal con bajo ruido», Rev. CINTEX, vol. 22, n.o 1, pp. 11–23, 2017.

V. Srdanovic et al., «Diseño y simulación de un sistema de medición de temperatura orientado hacia el aprendizaje aplicativo», Rev. CINTEX, vol. 19, pp. 9–22, 2014.

J. A. Ocampo Toro, J. P. Alzate Sanchez, Á. D. Chancy Villa, y S. Valencia Cardona, «Sistema autosostenible de alarma temprana en corrientes fluviales», Rev. CINTEX, vol. 22, n.o 2, dic. 2017.

D. Ramírez, «Integración del internet de las cosas en los procesos logísticos de máquinas dispensadoras», Rev. CINTEX, vol. 23, n.o 1, pp. 25-30, oct. 2018, doi: 10.33131/24222208.309.

C. Gackenheimer, Introduction to React. Berkeley, CA: Apress, 2015.

B. I. Ismail et al., «Evaluation of Docker as Edge computing platform», en 2015 IEEE Conference on Open Systems (ICOS), Melaka, Malaysia, 2015, pp. 130-135, doi: 10.1109/ICOS.2015.7377291.

Published

2019-12-31

How to Cite

Martínez Zarate, J. C., & Durango Román, O. A. (2019). Real-time home monitoring system of carbon monoxide as an application of internet of things. Revista CINTEX, 24(2), 25–32. https://doi.org/10.33131/24222208.335

Issue

Section

SHORT ARTICLE
Crossref Cited-by logo