Use of coal waste to reduce the environmental impact of coal mining in Colombia: a study of application in the cement industry

Authors

DOI:

https://doi.org/10.33131/24222208.323

Keywords:

Coal washery rejects, calcined clay, pozzolan, metakaolin, eco-cements

Abstract

New materials capable of developing cementitious properties, especially industrial waste that allows reducing the clinker in cement, have been studied to reduce CO2 emissions in cement production, increase the use of waste and generate alternative raw materials with greater availability and potential for use.  Additionally, it is known that coal mining generates a large amount of waste, both in the exploitation and benefit of it. Therefore, this paper studies the mechanical performance (compression strength) and its effect on a cement matrix added with a thermally activated Colombian coal waste, generated from the coal washing process (washery rejects), with the purpose of using this waste as supplementary cementing material. The physical-chemical and mineralogical characterization of raw and calcined material was carried out by a hydrometer, XRF, XRD, TGA/TDA, and coal proximate analysis. The waste is composed mostly of SiO2, Al2O3, SO3, and Fe2O3, and its main minerals are mica, kaolinite, quartz, and illite. The compressive strength of mortars added with 20% of substitution was evaluated. Good results were obtained with this substitution, after both periods of 28 and 90 days of curing time.

Downloads

Download data is not yet available.

Author Biographies

José Rodríguez, Universidad Nacional de Colombia

Grupo de Investigación del Cemento y Materiales de Construcción

Jorge Tobón, Universidad Nacional de Colombia

Professor

Grupo de Investigación del Cemento y Materiales de Construcción

References

[1] D. Burchart-korol, A. Fugiel, K. Czaplicka-kolarz, and M. Turek, “Model of environmental life cycle assessment for coal mining operations,” Sci. Total Environ., vol. 562, pp. 61–72, 2016.
[2] Y. Liu, S. Lei, T. Huang, M. Ji, Y. Li, and Y. Fan, “Research on mineralogy and flotation for coal-series kaolin,” Appl. Clay Sci., vol. 136, pp. 37–42, 2017.
[3] M. Academy, “Effect of Coal Gangue with Different Kaolin Contents on Compressive Strength and Pore Size of Blended Cement Paste,” vol. 23, no. 1, pp. 12–15.
[4] B. Zhengfu, I. H. I, D. J. L, O. Frank, and S. Sue, “Environmental issues from coal mining and their solutions,” Min. Sci. Technol., vol. 20, no. 2, pp. 215–223, 2010.
[5] Duffy, G. J., Lanauze, R. D., & Kable, J. W. (1981). Reducing the environmental impact of coal-washing practice in Australia. Minerals and the Environment, 3(4), 103-110.
[6] X. Querol et al., “Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China,” Int. J. Coal Geol., vol. 75, no. 2, pp. 93–104, 2008.
[7] R. K. Pan, M. G. Yu, and L. X. Lu, “Experimental study on explosive mechanism of spontaneous combustion gangue dump,” J. Coal Sci. Eng., vol. 15, no. 4, pp. 394–398, 2009.
[8] L. Beltramini, M. Suarez, A. Guilarducci, M. Carrasco, and R. Grether, “Aprovechamiento de Residuos de la Depuración del Carbón Mineral: Obtención de Adiciones Puzolánicas para el Cemento Portland,” Rev. Tecnol. y Cienc., vol. Año 3, no. 4, pp. 5–18, 2010.
[9] K. M. Skarzynska, “Reuse of coal mining wastes in civil engineering - Part 1: properties oof minestone,” vol. 15, no. 1, pp. 3–42, 1995.
[10] E. Mejía, J. Giraldo, and L. Martínez, “Residuos de construcción y demolición. Revisión sobre su composición, impactos y gestión.,” Rev. CINTEX, vol. 18, pp. 105–130, 2013.
[11] K. L. Scrivener, “Future Cements Options for the future of cement,” Indian Concr. J., vol. 88, no. 7, pp. 11–21, 2014.
[12] M. Frías et al., “The Influence of Activated Coal Mining Wastes on the Mineralogy of Blended Cement Pastes,” Am. Ceram. Soc., no. September, pp. 1–8, 2015.
[13] Agency International Energy, “Energy Technologies, Perspectives, Scenarios and Strategies to 2050,” 2008.
[14] R. S. Almenares, L. M. Vizcaíno, S. Damas, A. Mathieu, A. Alujas, and F. Martirena, “Industrial calcination of kaolinitic clays to make reactive pozzolans,” Case Stud. Constr. Mater., vol. 6, no. April, pp. 225–232, 2017.
[15] A. Tironi, M. A. Trezza, A. N. Scian, and E. F. Irassar, “Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays,” J. Therm. Anal. Calorim., vol. 117, no. 2, pp. 547–556, 2014.
[16] A. Tironi, M. A. Trezza, A. N. Scian, and E. F. Irassar, “Assessment of pozzolanic activity of different calcined clays,” Cem. Concr. Compos., vol. 37, pp. 319–327, 2013.
[17] R. Siddique and J. Klaus, “Influence of metakaolin on the properties of mortar and concrete: A review,” Appl. Clay Sci., vol. 43, no. 3–4, pp. 392–400, 2009.
[18] M. Frías, R. García, R. Vigil de la Villa, and S. Martínez, “Coal Mining Waste as a Future Eco-Efficient Supplementary Cementing Material”, pp. 232–241, 2016.
[19] L. Beltramini and A. Guilarducci, “Puzolanas artificiales. Estudio de la activación térmica de residuos de carbón.,” Jorn. Investig. Tecnol. 2013., no. 1, pp. 1–4.
[20] Y. Liu, S. Lei, M. Lin, Y. Li, Z. Ye, and Y. Fan, “Assessment of pozzolanic activity of calcined coal-series kaolin,” Appl. Clay Sci., vol. 143, no. December 2016, pp. 159–167, 2017.
[21] R. García-giménez, R. Vigil, D. Villa, and V. Rubio, “The Transformation of Coal-Mining Waste Minerals in the Pozzolanic Reactions of Cements,” 2016.
[22] G. Kakali, T. Perraki, S. Tsivilis, and E. Badogiannis, “Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity,” Appl. Clay Sci., vol. 20, no. 1–2, pp. 73–80, Sep. 2001.
[23] A. Tironi, M. A. Trezza, E. F. Irassar, and A. N. Scian, “Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity,” Procedia Mater. Sci., vol. 1, pp. 343–350, 2012.
[24] H. Yanguatin, J. Tobón, and J. Ramírez, “Pozzolanic reactivity of kaolin clays, a review,” Rev. Ing. Constr., vol. 32, no. August, pp. 13–24, 2017.
[25] Glendon W. Gee and D. Or, “Methods of soil analysis,” in Methods of soil analysis, Soil Science Society of America Book Series, 2002, pp. 255–293.
[26] B. K. Salikia, R. K. Boruah, and P. K. Gogoi, “FT-IR and XRD analysis of coal from Makum coalfield of Assam,” J. Earth Syst. Sci., vol. 116, no. 6, pp. 575–579, 2007.
[27] S. Hollanders, R. Adriaens, J. Skibsted, Ö. Cizer, and J. Elsen, “Pozzolanic reactivity of pure calcined clays,” Appl. Clay Sci., vol. 132–133, pp. 552–560, 2016.
[28] R. A. Sayanam, A. K. Kalsotra, and S. K. Mehta, “Studies on thermal transformation and pozzolanic activities of clay from Jammu Region (India),” vol. 35, pp. 99–106, 1987.
[29] M. Földvári, Handbook of the thermogravimetric system of minerals and its use in geological practice, vol. 56, no. 4. 2013.
[30] ASTM D388-18, Standard Classification of Coals by Rank, vol. 05, no. January 2000. 2002, pp. 1–7.
[31] A. Tironi, M. A. Trezza, A. N. Scian, and E. F. Irassar, “Incorporation of Calcined Clays in Mortars: Porous Structure and Compressive Strength,” Procedia Mater. Sci., vol. 1, pp. 366–373, 2012.
[32] B. Ilić, V. Radonjanin, M. Malešev, M. Zdujić, and A. Mitrović, “Study on the addition effect of metakaolin and mechanically activated kaolin on cement strength and microstructure under different curing conditions,” Constr. Build. Mater., vol. 133, pp. 243–252, 2017.
[33] M. Arikan, K. Sobolev, T. Ertün, A. Yeğinobali, and P. Turker, “Properties of blended cements with thermally activated kaolin,” Constr. Build. Mater., vol. 23, no. 1, pp. 62–70, Jan. 2009.
[34] M. Antoni, J. Rossen, F. Martirena, and K. Scrivener, “Cement substitution by a combination of metakaolin and limestone,” Cem. Concr. Res., vol. 42, no. 12, pp. 1579–1589, 2012.
[35] D. da Silva Andrade, J. H. da Silva Rêgo, P. Cesar Morais, and M. Frías Rojas, “Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica,” Constr. Build. Mater., vol. 159, pp. 18–26, 2018.
[36] J. A. Patiño-Murillo, J. J. Castro-Maldonado, Y. C. Gutiérrez-Sandoval, J. I. Leal-Santafé, y O. Hurtado-Figueroa, «Estudio del comportamiento de muestras de mortero natural sometidas a esfuerzo de compresión», Lámpsakos, vol. 1, n.o 20, pp. 22–28, 2018.
[37] Sistema de Información Minero Colombiano [En línea].” 2016, Disponible en [02-10-2018]: http://www.upme.gov.co/generadorconsultas/Consulta_Series.aspx?idModulo=4&tipoSerie=121&grupo=368

Published

2018-12-31

How to Cite

Rodríguez, J., Tobón, J., Frías, M., & Sánchez de Rojas, M. I. (2018). Use of coal waste to reduce the environmental impact of coal mining in Colombia: a study of application in the cement industry. Revista CINTEX, 23(2), 95–102. https://doi.org/10.33131/24222208.323

Issue

Section

RESEARCH PAPERS