Heptano y Dodecano como sustitutos del combustible diesel, una comparación mediante Fluido-Dinámica Computacional (CFD)

Authors

  • A. L. Delgado-Mejia Magister en Ingeniería: Energética – Ingeniero Mecánico. Institución Universitaria Pascual Bravo
  • L. C. Olmos-Villalba Magister en Ingeniería: Energética – Ingeniero Mecánico. Institución Universitaria Pascual Bravo

Keywords:

CFD solver, surrogate fuel, diesel fuel, injection, spray

Abstract

En este trabajo se ha efectuado un estudio comparativo entre dos combustibles de referencia como el n-heptano y el n-dodecano, ambos ampliamente utilizados como sustitutos del combustible diesel, en diversos estudios sobre inyección combustión y formación de emisiones contaminantes en motores diesel. Para ello se ha simulado la inyección evaporación y auto ignición de los combustibles mencionados utilizando un paquete de Fluido-Dinámica Computacional (CFD). Los resultados se han validado con información experimental proporcionada por los laboratorios SANDIA, llevados a cabo a diferentes condiciones operativas y con diferentes combustibles. La comparación se ha hecho en términos de parámetros típicos como la longitud de penetración, el lift-off de la llama y el retraso a la ignición.

Los resultados indican que hay una buena concordancia entre la simulación CFD y los datos experimentales, al comparar cada combustible sustituto. Sin embargo, al hacer la comparación con el diesel, el n-heptano fue el combustible sustituto que presentó un comportamiento más cercano al diesel, en términos del lift-Off y del retraso a la ignición. 

Downloads

Download data is not yet available.

References

[1] X. You, F.N. Egolfopolous, H. Wang, Proceedings of the Combustion Institute 32 (2009) 403–410

[2] C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, E.J. Silke, Combustion and Flame 156 (2009) 181–199

[3] D. Sheen, W. Tsang. A comparison of literature models for the oxidation of normal heptane. Combustion and Flame 161 (2014) 1984–1992

[4] C. Baumgarten. Mixture Formation in Internal Combustion Engines. Editorial Sprin-ger, Berlin, 2006

[5] S. Ayyapureddi, U. Egüz, C. Bekdemir, L.M.T. Somers, L.P.H. de Goey,Application of the FGM method to Spray A conditions of the ECN database, ICLASS 2012, in: 12th Trienniel International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2–6 September 2012

[6] Y. Pei, et al. A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method. Flow, Turbulence and Combustion. September 2013, Volume 91, Issue 2, pp 249-280

[7] S. Bhattacharjee, D. Haworth. Simulations of Transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame 160 (2013) 2083–2102

[8] M. Meijer, et al. Engine Combustion Network (ECN): Characterization and Comparison of Boundary Conditions for Different Combustion Vessels," Atomization and Sprays, Vol. 22, No. 9, pp. 777-806

[9] S. Som, et al. Three dimensional simulationsof diesel sprays using n-dodecane as a surrogate. Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Storrs, CT, 9–11 October2011

[10] R. Payry, et al. Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering 35 (2012) 185-195

[11] OpenFoam User Guide. Version 2.01, September 2011

[12] S. Arshad. Descriptions and comparisons ofsprayFoam, reactingParcelFoam, and basicSprayCloud, basicReactingCloud, Project Work. Chalmers University of Technology. 2014

[13] R. D. Reitz. Modelling Atomization Process in High Pressure Vaporizing Sprays. Atomization and Spray Technology, Vol 3:309-337, 1987

[14] R. D. Reitz, Bracco F. V. Mechanism of Atomization of Liquid Jets. The Physics of Fluid, Vol 25, p1730-1742, 1982

[15] R. D. Reitz, R. Diwakar. Effect of Drop Breakup on Fuel Sprays. SAE Paper 860469

[16] W. Yuan, et al. “Spray, ignition and combustion modeling of biodiesel fuels for investigating NOX emissions”. Transactions of the ASAE.Vol. 48. 2005. pp. 933-939

[17] G. Stiesch. Modelling Engine Spray and Combustion Processes. Springer, Hannover, 2003.

[18] J. Warnatz, U. Maas U, R. Dibble. Combustion, physical and chemical fundamentals, modelling and simulation, experiments pollutant formation. Springer, 4th edition. Berlin, 2006

[19] M. Halstead M., et al. The Autoignition of Hydrocarbon Fuels at High Temperature and Pressures – Fitting of a Mathematical Model. Combust Flame, Vol 30, pp 45-60, 1977

[20] D. C. Kong, et al. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulations. SAE Paper 950278

[21] E. M. Sazhina, et al. A Detailed Modelling of the Spray Ignition Process in Diesel Engines. Combustion Science and Technology, vol 160, pp 317-344, 2000

[22] N. Nordin. Complex Chemistry Modeling of Diesel Spray Combustion. Doctoral Thesis, Chalmers University of Technology, Goteborg, 2001

[23] Sandia National Laboratories. Engine Combustion Network (share.sandia.gov/ecn)

[24] L.M. Pickett, et al. Relationship between Ignition Process and the Lift-Off Length of Diesel Fuel Jets SAE 2005-01-3843 (2005)

[25] D. Siebers, B. Higgins. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions. SAE Technical Paper 2001-01-0530

[26] S. Turns. An introduction to combustion, concepts and applications, 2a edition. Mc-Graw-Hill. New York, 2000

Published

2015-06-30

How to Cite

Delgado-Mejia, A. L., & Olmos-Villalba, L. C. (2015). Heptano y Dodecano como sustitutos del combustible diesel, una comparación mediante Fluido-Dinámica Computacional (CFD). Revista CINTEX, 20(1), 97–110. Retrieved from https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/32

Issue

Section

ARTICLES

Some similar items: