Physical-Mathematical Model for Estimating the Particle Size in Low-Diluted Colloidal Suspensions

Authors

  • J. L. Palacio Facultad de Ingeniería, Institución Universitaria Pascual Bravo
  • M. R. Fulla Facultad de Ingeniería, Institución Universitaria Pascual Bravo
  • I. E. Rivera Facultad de Ingeniería, Institución Universitaria Pascual Bravo

Keywords:

Particle size, nanoparticles, colloidal suspensions, turbid media, Mie scattering

Abstract

The  knowledge  of  the  particles  sizes  on  the  order  of  micrometers  or  nanometers  in suspensions, offers a wealth of information for a wide range of biological and biomedical applications  such  as  the  development  of  biopolymers,  evaluation  the  efficiency  of antibiotics and anticancer drugs. These investigations have as common factor the need to estimate the average size of a large number of particles in colloidal suspensions, which is known as turbid media due to its optical characteristics. The methodologies based on Mie scattering are widely used because their implementations are inexpensive in relation to  other  methods  and  it  is  valid  only  when  it  considers  that  the  medium  is  composed  of transparent dielectric spherical particles and the suspension is highly diluted. These methods  are  based  on  experimental  contrast  measurements  with  results  of  theoretical models of the intensity of light scattered by the medium. In this contribution we present a physical-mathematical model that arises from the application of the model together with the analytical Mie scattering model of photon migration, to estimate the size of particles in turbid media of low dilution

Downloads

Download data is not yet available.

References

[1] W. C. Wimley y K. Hristova, «Antimicrobial Peptides Successes, Challenges and Unanswered Questions,» J Membrane Biol, vol. 239, p. 27–34, 2011.

[2] N. Buron, M. Porceddu, M. Brabant, D. Desgue, C. Racoeur, M. Lassalle, C. Péchoux, R. Rustin, E. Jacotot y A. Borgne-Sanchez, «Use of Human Cancer Cell Lines Mitochondria to Explore the Mechanisms of BH3 Peptides and ABT-737-Induced Mitochondrial Membrane Permeabilization,» PLoS ONE, vol. 5, nº 3, p. e9924, 2010.

[3] J. K. Armstrong, R. B. Wenby, H. J. Meiselman y T. C. Fisher, «The Hydrodynamic Radii of Macromolecules and Their Effect on Red,» Biophysical Journal, vol. 87, p. 4259–4270, 2004.

[4] S. Asakura y F. Oosawa, «Interaction between Particles Suspended in Solutions of Macromolecules,» Journal of Polymer Science, vol. 33, pp. 183-192, 1958.

[5] O. Baskurt, B. Neu y J. Herbert, Red Blood Cell Aggregation, USA: CRC Press, 2012.

[6] R. M. Bauersachs, R. B. Wenby y H. J. Meiselman, «Determination of specific red blood cell aggregation indices via an automated system,» Clin. Hemorheol, vol. 9, pp. 1-25, 1989.

[7] S. K. Brar y M. verma, «Measurement of nanoparticles by light-scattering techniques,» Trends in Analytical Chemistry, vol. 30, nº 1, pp. 1-17, 2011.

[8] C. F. Bohren y D. R. Huffman, Absorption and Scattering of Light by Small Particles, USA: WILEY-vCH v erlag GmbH & Co. KGaA, 1998.

[9] M. I. Mishchenko, J. W. Hovenier y L. D. Travis, Light Scattering by Nonspherical Particles, USA: Academic Press, 2000.

[10] Y. Hui, Z. Gang, D. Shu-Guang, Z. Ren-Jie y M. Ping-An, «Dynamic light back-scattering with polarization gating and Fourier spatial filter for particle sizing in concentrated suspension,» Optica Applicata, vol. 40, nº 4, pp. 819-826, 2010.

[11] A. Doronin y I. Meglinski, «Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics,» Journal of Biomedical Optics, vol. 17, nº 9, p. 090504, 2012.

[12] J. Zhu, K. S. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen y L. Yang, «On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,» Nature Photonics, vol. 4, pp. 46-49, 2010.

[13] H. Auweter y D. Horn, «Fiber-Optical Quasi-elastic Light Scattering of Concentrated Dispersions,» Journal of Colloid and Interface Science, vol. 105, nº 2, pp. 399-409, 1985.

[14] W. Tscharnuter, «Photon Correlation Spectroscopy in Particle Sizing,» Encyclopedia of Analytical Chemistry, p. 5469–5485, 2000.

[15] H. C. van de Hulst, Light Scattering by Small Particles, USA: Dover Publications, Inc., 1981.

[16] C. Troiber, J. C. Kasper, S. Milani, M. Scheible, I. Martin, F. Schaubhut, S. Küchler, J. Rädler, F. C. Simmel, W. Friess y E. Wagner, «Comparison of four different particle sizing methods for siRNA polyplex characterization,» European Journal of Pharmaceutics and Biopharmaceutics, vol. 84, p. 255–264, 2013.

[17] J. Wu, F. Partovi, M. Feld y R. Rava, «Diffuse reflectance from turbid meduia - an analytical model of photon migration,» Applied Optics, vol. 32, nº 7, p. 1121, 1993.

[18] N. Ghosh, S. Mjumder y P. Gupta, «Fluorescence depolarization in a scattering medium: Effect of size parameter of a scatter,» PHYSICAL REVIEW E, vol. 65, pp. 026608-1, 026608-5, 2002.

[19] J. Wu, M. Feld y R. Rava, «Analytical model for extracting intrinsic fluorescence in turbid media,» Applied Optics, vol. 32, nº 19, pp. 3585-3595, 1993 .

[20] J. Lakowicz, Principles of Fluorescence Spectroscopy, Tercera ed., Springer, 2006.

[21] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen y L. Yang, «On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,» Nature Photon, vol. 4, pp. 46-49, 2010.

[22] G. Popescu y A. Dogariu, «Scattering of low coherence radiation and applications,» Eur. Phys. J. Appl. Phys., vol. 32, p. 73–93, 2005.

[23] F . Jaillon, S.E. Skipetrov, J. Li, G. Dietsche, G. Maret y T. Gisler. «Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer» Optics Express, vol. 14, nº 22, pp. 10181-10194, 2006.

[24] M. Medebach, C. Moitzi, N. Freiberger y O. Glatter, «Dynamic light scattering in turbid colloidal dispersions: A comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument,» Journal of Colloid and Interface Science, vol. 305, p. 88–93, 2007.

[25] S. Elzey y v. H. Grassian, «Nanoparticle Dissolution from the Particle Perspective: Insights from Particle Sizing Measurements,» Langmuir Letter, vol. 26, nº 15, p. 12505–12508, 2010.

Published

2015-06-30

How to Cite

Palacio, J. L., Fulla, M. R., & Rivera, I. E. (2015). Physical-Mathematical Model for Estimating the Particle Size in Low-Diluted Colloidal Suspensions. Revista CINTEX, 20(1), 53–68. Retrieved from https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/30

Issue

Section

ARTICLES