Ubicación y operación eficiente de almacenadores de energía en micro-redes en presencia de generación distribuida

Autores/as

DOI:

https://doi.org/10.33131/24222208.290

Palabras clave:

Almacenadores de energía, despacho económico, flujo de potencia, generación distribuida, micro-redes, programación lineal entera

Resumen

En este trabajo se propone una metodología eficiente para la localización y operación óptima de almacenadores de energía (AE) en micro-redes (MR) a través de un modelo de programación lineal entera mixta (MPLEM). El modelo matemático desarrollado corresponde a un modelo de despacho económico para miro-redes (DEMR) con presencia de generación distribuida (GD) a partir de recursos energéticos renovables. Como función objetivo se considera la minimización de los costos de compra de energía en la bolsa por parte del agente operador de red, teniendo en cuenta dos escenarios de operación; el primero considera un precio de energía fijo; y el segundo, precios variables en el nodo que conecta la MR al sistema de potencia para un horizonte operativo de 24 horas. Como restricciones se consideran los flujos de potencia por la línea a través de un modelo de flujo en redes, las capacidades de almacenamiento de los AE y las capacidades horarias de generación de potencia en los GD. Para resolver el MPLEM propuesto se emplea el paquete de optimización comercial GAMS, empleando el solver CPLEX. La metodología propuesta permite localizar, dimensionar y operar los AE, considerando como horizonte de operación, un día típico laboral en Colombia, adicionalmente se tienen en cuenta diferentes consignas operativas en la operación de los AE según los estándares existentes. Con el fin de conocer las variables de estado de la MR, es empleado un flujo de potencia del tipo barrido iterativo para evaluar las respuestas obtenidas por el MPLEM. Esta evaluación permite hallar los costos operativos reales de la MR. Para validar el modelo matemático propuesto es empleado un sistema de prueba de la literatura especializada de 7 nodos con presencia de dos generadores distribuidos, siendo uno de tipo fotovoltaico y el otro tipo eólico. Los resultados obtenidos muestran la eficiencia de la metodología propuesta, así como su facilidad de implementación y la capacidad de adaptación para sistemas de mayor tamaño.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos A. Castro, Universidad Estatal de Campinas

Professor, School of Electrical and Computer Engineering, University of Campinas

Referencias bibliográficas

O. D. Montoya, A. Grajales, A. Garces and C. A. Castro, "Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation," in IEEE Latin America Transactions, vol. 15, no. 5, pp. 890-900, May 2017. doi: 10.1109/TLA.2017.7910203

United Nations, “Adoption of the Paris Agreement,” framework convention of climate change, pp. 1-32, Dec. 2015.

R. Mahabir and R. M. Shrestha, “Climate change and forest management: Adaptation of geospatial technologies,” Agro-Geoinformatics (Agro-geoinformatics), 2015 Fourth International Conference on, Istanbul, 2015, pp. 209-214. Doi: 10.1109/Agro-Geoinformatics.2015.7248108

A. M. Hasna, “Climate Change, Technology, and Sustainability,” in IEEE Technology and Society Magazine, vol. 29, no. 4, pp. 30-36, winter 2010.doi: 10.1109/MTS.2010.939226

V. Azad and R. Khoie, “Mitigating carbon dioxide emission with gradual implementation of distributed generation in Northern California,” North American Power Symposium (NAPS), 2013, Manhattan, KS, 2013, pp. 1-6. Doi: 10.1109/NAPS.2013.6666898

A. M. Hernandez and H. L. Reyes, “Behavior of Fuels Supply Variable Costs in Electrical Energy Generation using Gas and Coal,” in IEEE Latin America Transactions, vol. 13, no. 9, pp. 2915-2921, Sept. 2015. Doi: 10.1109/TLA.2015.7350039

H. W. Whittington and S. W. Gundry, “Global climate change and hydroelectric resources,” in Engineering Science and Education Journal, vol. 7, no. 1, pp. 29-34, Feb 1998. Doi: 10.1049/esej:19980107

M. J. Hossain, T. K. Saha and N. Mithulananthan, “Impacts of wind and solar integrations on the dynamic operations of distribution systems,” Universities Power Engineering Conference (AUPEC), 2011 21st Australasian, Brisbane, QLD, 2011, pp. 1-6.

A. De Souza et al., “Microgrids operation with micro dispersed generators and renewables,” Integration of Renewables into the Distribution Grid, CIRED 2012 Workshop, Lisbon, 2012, pp. 1-4. Doi: 10.1049/cp.2012.0866

C. Abbey and G. Joos, “Coordination of Distributed Storage with Wind Energy in a Rural Distribution System,” Industry Applications Conference, 2007. 42nd IAS Annual Meeting. Conference Record of the 2007 IEEE, New Orleans, LA, 2007, pp. 1087-1092. Doi: 10.1109/07IAS.2007.169

Z. Wang, C. Gu, F. Li, P. Bale and H. Sun, “Active Demand Response Using Shared Energy Storage for Household Energy Management,” in IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 1888-1897, Dec. 2013. Doi: 10.1109/TSG.2013.2258046

S. I. Kampezidou, E. Polymeneas and S. Meliopoulos, “The economic effect of storage in systems with high penetration of renewable sources,” North American Power Symposium (NAPS), 2015, Charlotte, NC, 2015, pp. 1-6. Doi: 10.1109/NAPS.2015.7335207

M. Martinez, M. G. Molina and P. E. Mercado, “Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation,” in IEEE Latin America Transactions, vol. 13, no. 9, pp. 2983-2990, Sept. 2015. Doi: 10.1109/TLA.2015.7350049

G. Carpinelli, G. Celli, S. Mocci, F. Mottola, F. Pilo and D. Proto, “Optimal Integration of Distributed Energy Storage Devices in Smart Grids,” in IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 985-995, June 2013. Doi: 10.1109/TSG.2012.2231100

S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, “State of the Art in Research on Microgrids: A Review,” in IEEE Access, vol. 3, no. , pp. 890-925, 2015. Doi: 10.1109/ACCESS.2015.2443119

S. Park, J. Lee, S. Bae, G. Hwang and J. K. Choi, “Contribution-Based Energy-Trading Mechanism in Microgrids for Future Smart Grid: A Game Theoretic Approach,” in IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4255-4265, July 2016. Doi: 10.1109/TIE.2016.2532842

N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” in IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1648-1657, July 2015. Doi: 10.1109/TSG.2015.2396992

O. D. Montoya, A. Garcés and C. A Castro, “Operación eficiente de micro-redes en presencia de generadores distribuidos y almacenadores de energía,” in SBSE2016, VI Simpósio Brasileiro de Sistemas Elétricos, Natal, RN, Brasil, CA, 2016, pp. 1-6.

A. C. Luna, N. L. Diaz, F. Andrade, M. Graells, J. M. Guerrero and J. C. Vasquez, “Economic power dispatch of distributed generators in a grid-connected microgrid,” 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, 2015, pp. 1161-1168. Doi: 10.1109/ICPE.2015.7167927

S. Bracco, F. Delfino, M. Rossi and M. Robba, “A multi-objective optimization tool for the daily management of sustainable smart microgrids: Case Study: the savona campus SPM and SEB facilities,” 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 683-688. Doi: 10.1109/SPEEDAM.2016.7526018

M. F. Z. Souza, “On rural microgrids design – a case study in Brazil,” Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015 IEEE PES, Montevideo, 2015, pp. 160-164. Doi: 10.1109/ISGT-LA.2015.7381146

F. Guo and C. Wen, “Distributed control subject to constraints on control inputs: A case study on secondary control of droop-controlled inverter-based microgrids,” 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, 2014, pp. 1119-1124. Doi: 10.1109/ICIEA.2014.6931333

S. M. Ashabani and Y. A. R. I. Mohamed, “A Flexible Control Strategy for Grid-Connected and Islanded Microgrids With Enhanced Stability Using Nonlinear Microgrid Stabilizer,” in IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1291-1301, Sept. 2012. Doi: 10.1109/TSG.2012.2202131

E. Unamuno and J. A. Barrena, “Equivalence of primary control strategies for AC and DC microgrids,” 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 2016, pp. 1-5. Doi: 10.1109/EEEIC.2016.7555729

A. Toliyat and A. Kwasinski, “Energy storage sizing for effective primary and secondary control of low-inertia microgrids,” 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, 2015, pp. 1-7. Doi: 10.1109/PEDG.2015.7223077

E. R. Sanseverino et al., “Energy Management Systems and tertiary regulation in hierarchical control architectures for islanded microgrids,” Environment and Electrical Engineering (EEEIC), 2015 IEEE 15th International Conference on, Rome, 2015, pp. 144-149. Doi: 10.1109/EEEIC.2015.7165525

F. Salem and M. I. Mosaad, “A comparison between MPC and optimal PID controllers: Case studies,” Michael Faraday IET International Summit 2015, Kolkata, 2015, pp. 59-65. Doi: 10.1049/cp.2015.1607

A. Bidram, A. Davoudi, F. L. Lewis and J. M. Guerrero, “Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization,” in IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3462-3470, Aug. 2013. Doi: 10.1109/TPWRS.2013.2247071

3M science applied to life, “Smart Grid Connected, Efficient and Sustainable Energy” available in: http://solutions.3m.com/wps/portal/3M/en_EU/SmartGrid/EU-Smart-Grid/

N. Yan, Z. X. Xing, W. Li and B. Zhang, “Economic Dispatch Application of Power System With Energy Storage Systems,” in IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1-5, Oct. 2016. Doi: 10.1109/TASC.2016.2598963

S. S. Haroon and T. N. Malik, “Environmental economic dispatch of hydrothermal energy system using stud differential evolution,” 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 2016, pp. 1-5. Doi: 10.1109/EEEIC.2016.7555630

D. Shirmoharmnadi, H. Hong, A. Semlyen and G. Luo. “A compensation-based power flow method for weakly meshed distribution and transmission networks”. IEEE Transactions on Power Systems. Vol. 3, pp. 753-762. May, 1988. ISSN: 0885-8950. DOI: 10.1109/59.192932.

M. Lavorato, J. F. Franco, M. J. Rider and R. Romero, "Imposing Radiality Constraints in Distribution System Optimization Problems," in IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 172-180, Feb. 2012. doi: 10.1109/TPWRS.2011.2161349

Descargas

Publicado

2017-10-02

Cómo citar

Montoya Giraldo, O. D., Grajales, A., Grisales, L. F., & Castro, C. A. (2017). Ubicación y operación eficiente de almacenadores de energía en micro-redes en presencia de generación distribuida. Revista CINTEX, 22(1), 97–117. https://doi.org/10.33131/24222208.290

Número

Sección

ARTÍCULOS DE INVESTIGACIÓN