Diagnosis del diseño y operación de 7 BRMs municipales para el tratamiento de aguas residuales

Authors

  • S. Gabarrón PhD researcher ICRA (Catalan Institute for Water Research), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain
  • M. Dalmau PhD researchers LEQUIA, Institute of the Environment, University of Girona, E17071, Girona, Catalonia, Spain
  • H. Monclús PhD researchers LEQUIA, Institute of the Environment, University of Girona, E17071, Girona, Catalonia, Spain
  • J. Comas PhD researcher ICRA (Catalan Institute for Water Research), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain; PhD researchers LEQUIA, Institute of the Environment, University of Girona, E17071, Girona, Catalonia, Spain
  • I. Rodriguez-Roda PhD researcher ICRA (Catalan Institute for Water Research), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain; PhD researchers LEQUIA, Institute of the Environment, University of Girona, E17071, Girona, Catalonia, Spain

Keywords:

BRMs, membranas, agua residuals, problemas operacionales, paràmetros de diseño

Abstract

Los  bioreactors  de  membranas  (BRMs)  representan  una  tecnología  emergente  por el  tratamiento  de  aguas  residuales  alrededor  del  mundo.  En  esta  línea,  siete  BRMs municipales  recientemente  construidas,  con  capacidades  entre  1,100  m3·día-1  to  35,000 m3·día-1(hasta 100,000 m3·día-1 en total) han sido diagnosticadas. La evaluación del diseño y operación a través de encuestas ha sido clasificada y descrita en tres categorías distintas: i) limitaciones de diseño, ii) fallos en el equipamiento y en las membranas y iii) problemas operacionales, con sus pertinentes interrelaciones entre ellos. Los dos BRMs más antiguos presentaron membranas rotas seis y siete años de operaciones, respectivamente, siendo necesario su reemplazamiento. Mientras que las espumas (foaming) han sido identificadas como mayor problema de operación en común, otros problemas como el taponamiento (clogging), la reducción del proceso de desnitrificación o el aire en las líneas de permeado han sido los que más preocupan a sus explotadores. Además, el ensuciamiento no ha sido mencionado en ninguna de las encuestas y el consumo energético identificado como la mayor limitación de dicha tecnología.

Downloads

Download data is not yet available.

References

[1] S. Hanft, Membrane Bioreactors in the Changing World Water Market, Business, Communications Company Inc. report C-240. 2006.

[2] M. Kraume, and A. Drews, Membrane bioreactors in wastewater treatment - Status and Trends. Chemical Engineering Technology, 33 (8), 1251-1259. 2010.

[3] S. Judd, C. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed., Butterworth-Heinemann. 2010.

[4] P. Le-Clech, Membrane Bioreactors and their uses in wastewater treatments. Applied Microbiology and Biotechnology, 88, 1253-1260. 2010.

[5] A. Santos, W. Ma and J. Judd, Membrane bioreactors: Two decades of research and implementation. Desalination, 273 (1), 148-154. 2011.

[6] P. Le-Clerch, A. Fane and G. Leslie, MBR focus: the operators’ perspective. Filtration and Separation, 4, 20-23. 2005

[7] M. Stefanski, S. Kennedy and S. Judd, The determination and origin of fibre clogging in membrane bioreactors. Journal of Membrane Science, 375(1-2), 198-203. 2011.

[8] J. Jimenez, P. Grelier, J. Meinhold, A. Tazi-Pain, Biological modeling of MBR and impact of primary sedimentation. Desalination, 250, 562-567. 2010.

[9] W. Schier, F.B. Frechen and S. Fischer, Efficiency of mechanical pre-treatment on European MBR plants. 2009

[10] H. Itowaka, C. Thiemig and J. Pinnekamp, Design and operating experiences of municipal MBRs in Europe. Water Science and Technology. 58, 12, 2319-2327. 2008.

[11] P. Cote, A. Janson, H. Rabie and M. Singh, Cyclic aeration system for submerged membrane module. International Patent WO/2000/21890. 2000.

[12] I. M. Palmowski, K. Veltmann and J. Pinnekamp, Energy Optimization of Large-Scale Membrane Bioreactors – Importance of the Design Flux. IWA Regional Conference and Exhibition on Membrane Technology and Water Reuse, October 2010, Istanbul, Türkei, 1009-1016. 2010.

[13] P. Krzeminski, J.H.J.M. Van Der Graaf and J.B. Van Lier, Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65(2), 380-392. 2012.

[14] G. Di Bella, G. Mannina and G. Viviani, An integrated model for physical– biological wastewater organic removal in a submerged membrane bioreactor: Model development and parameter estimation. Journal of Membrane Science. 322, 1–12. 2008.

[15] R. Smith, The MBR at Buxton wastewater plant. Presented at The use and Practice of Membranes in Water and Wastewater in the UK, Meeting of the Chartered Institution of Water Environ. Management (CIWEM), Glasgow, 2006.

[16] G. Di Bella and M. Torregrossa, Foaming in membrane bioreactors: Identification of the causes. Bioresource Technology, 147 , 614-618. 2013.

[17] D. Jenkins, M.G. Richard and G. T. Daigger, Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems IWA Publishing. 2004.

[18] M. Martínez, M. Sànchez-Marrè, J. Comas and I. Rodriguez-Roda, Case-based reasoning, a promising tool to face solids separation problems in the activated sludge process. Water Science and Technology, 53 (1), 209-216. 2006.

[19] J. Lebegue, M. Heran and A. Grasmick, Membrane air flow rates and HF sludging phenomenon in SMBR. Desalination. 236, 135-142. 2009.

[20] T. Zsirai, P. Buzatu, P. Aerts and S. Judd, Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor. Water Research 46 (14), 4499-4507. 2012.

[21] E. Germain, F. Nelles, A. Drews, P. Pearse, M. Kraume, E. Reid, S.J. Judd and T. Stephenson, Biomass effects on oxygen transfer in membrane bioreactors. Water Research 41(5), 1038-1044. 2007.

[22] H.P. Chu and X. Li, Membrane fouling in membrane bioreactor (MBR): sludge cake formation and fouling characteristics. Biotechnology and Bioengineering. 90 (3): 323–331. 2005.

[23] Metcalf and Eddy. Wastewater Engineering, McGraw-Hill, New York. Desalination 236, 85-93. 2003.

Published

2015-06-30

How to Cite

Gabarrón, S., Dalmau, M., Monclús, H., Comas, J., & Rodriguez-Roda, I. (2015). Diagnosis del diseño y operación de 7 BRMs municipales para el tratamiento de aguas residuales. Revista CINTEX, 20(1), 35–51. Retrieved from https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/29

Issue

Section

ARTICLES