Modeling and identification of an electromechanical system and PID control design to wirelessly govern the movement of one mobile object

Authors

  • Vesna Srdanovic Departamento de Electrónica, Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín, Colombia
  • Oscar Botero Henao Departamento de Electrónica, Facultad de Ingeniería, Institución Universitaria Pascual Bravo
  • Sergio Hernando Ruiz Institución Universitaria Pascual Bravo, Medellín, Colombia

DOI:

https://doi.org/10.33131/24222208.285

Keywords:

Modeling of DC motor, PID control, Arduino technology, wireless data transmission, ZigBee protocol

Abstract

In this article we are presenting the process of the speed control designing for an
electromechanical system, specifically for a DC motor with permanent magnet. The results
obtained are relevant for the development of the control system of one mobile object, with the
aim of governing its movement wirelessly. The applied methodology includes mathematical
modeling, the identification of the DC motor and the design of the corresponding speed
control. The mathematical model was presented, according to the laws that describe the
electromechanical systems and the numerical stipulation of the parameters that characterize
the motor. Also another method was used to obtain the motor transfer function, known as
identification of a physical system, applying the experimental and computational technique.
In the verification process of the transfer functions and the design of the control system
we used the Matlab software and its respective tools like Simulink, Simscape and SISO Tool.
Finally the designed controllers will be used to develop a control system for displacement of
a mobile object, according to a previously specified trajectory. For wireless communication,
ZigBee technology was selected, the small radio transceivers called XBee modules, suitable
for short-range wireless communication.

Downloads

Download data is not yet available.

References

K. Ogata, “Ingeniería de Control Moderno”, Prentice Hall, Madrid, 2010.

R. Dorf, R. Bishop, “Sistemas de Control Moderno”, Prentice Hall, Madrid, 2005.

N. S. Nise. “Control systems engineering”, John Wiley & Sons, Jefferson City, 2011.

V. M. Hernández, R. Silva, R. V. Carrillo Serrano, “Control Automático”, Colección CIDETEC, México, 2013.

F. X. Blasco, M. A. Martínez, J. S. Senent, J. Sanchis, “Sistemas Automáticos”, Universidad Politécnica de Valencia, Valencia, 2000.

M. G. Quijano, C. G. Hernández, “Obtención experimental de los parámetros del motor que se utilizará en el sistema de locomoción de una esfera rodante”, Tesis de la Universidad Pontificia Bolivariana, Colombia, 2009.

S. E. Toledo, “Diseño de controladores PID en tiempo discreto y análisis de respuesta utilizando herramientas computacionales”, Tesis de la Universidad de San Carlos de Guatemala, Guatemala, 2007.

MathWorks, “Simulink User’s Guide”, The MathWorks Inc., Natick, 2015.

MathWorks, “Simscape User’s Guide”, The MathWorks Inc., Natick, 2014.

L. Ljung. “System Identification Toolbox – Getting Started Guide”, The MathWorks Inc., Natick, 2015.

C. Urrea, J. Kern, “Characterization, Simulation and Implementation of a New Dynamic Model for a DC Servomotor”, IEEE Latin America Transactions, Vol. 12, No. 6, pp. 997-1004, September 2014.

M. S. Álvarez, “Modelo Matemático de un Motor de Corriente Continua Separadamente Excitado: Control de Velocidad por Corriente de Armadura”, Latin American Journal of Physics Education, Vol. 6, No. 1, pp. 155-161, March 2012.

Pololu Robotics&Electronics, “Metal Gearmotor 30:1”.

MathWorks, “Arduino Support from MATLAB”, The MathWorks, Inc.

M. Fruk, G. Vujisic, T. Spoljaric, “Parameter Identification of Transfer Functions Using MATLAB”, 36th International Convention on Information & Communication Technology Electronics & Microelectronics (MIPRO), pp. 697-702, 2013.

D. A. Zacarias, “Estudio y Control Automático Retroalimentado de un Motor de CD de Laboratorio con las Herramientas de Matlab y Labview” (Tesis), Universidad Veracruzana, Xalapa, 2011.

J. D. Rairán, C. E. Guerrero y J. A. Mateus, “Diseño de Controladores de Tipo Proporcional Integral Derivativo (PID) y Difuso para la Posición de un Motor de Corriente Continua (DC)”, Revistas Científicas Pontificia Universidad Javeriana – Ingeniería y Universidad, Vol. 14, No.1, pp. 137-160, Enero-Junio de 2010.

E. Rodríguez, J. Páez, “Diseño Mecatrónico de una Shield de Arduino para el Control de Motores DC con Escobillas”, Prospect, Vol. 14, No. 1, pp. 73-79, Enero-Junio 2016.

P. Vikhe, N. Punhabi, C. Kadu, “Real Time DC Motor Speed Control using PID Controller in Labview”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, Issue 9, Sep. 2014.

N. Korenic, M. Horvatic, “Upravljanje Brzinom Vrtnje Malog Istosmjernog Elektromotora Koristenjem Arduino Razvojne Platforme”, Technical Jornal, Vol. 9, No. 1, pp 70-76, Sep. 2015.

P. Vinnacota, “Motor Control with Arduino: A Case Study in Data-Driven Modeling and Control Design”, The MathWorks, Inc., 2013.

J. Titus, “The Hands-on Xbee Lab Manual”, Elsevier, Waltham, 2012.

Published

2017-10-02

How to Cite

Srdanovic, V., Botero Henao, O., & Hernando Ruiz, S. (2017). Modeling and identification of an electromechanical system and PID control design to wirelessly govern the movement of one mobile object. Revista CINTEX, 22(1), 25–46. https://doi.org/10.33131/24222208.285

Issue

Section

RESEARCH PAPERS