Validation Of The Aquacrop Model For Different Levels Of Fertilization On Quinoa Crop In The Bolivian Highlands

Authors

  • Héctor Fajardo Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia.
  • Magali García Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia.
  • Dirk Raes Department of Earth and Environmental Sciences, University of Leuven, KU Leuven
  • H. Van Gaelen Department of Earth and Environmental Sciences, University of Leuven, KU Leuven

Keywords:

Modeling, AquaCrop, soil fertility, quinoa

Abstract

Many crop models use a nutrient balance for modeling crop response to soil fertility, but it means the use of a large amount of data that is not normally available, which discourages their use. To compensate this problem, the AquaCrop crop model released its soil fertility evaluation module with a semi-quantitative approach, instead of introducing different levels of specific nutrients, the overall level of soil fertility is introduced. This is expressed in terms of the expected impact on crop biomass, which is observed in the field or obtained from production statistics. The study describes how it was calibrated and evaluated, the semiquantitative approach of AquaCrop to simulate the quinoa crop in the Bolivian highlands under integrated restrictions of nutrients and water. The response algorithms to fertility in the model were evaluated with data from field experiments crop in different agricultural managements and regions of the Bolivian highlands, with various levels of soil fertility and under rainfed or deficit irrigation. It was demonstrated that AquaCrop properly simulates the soil moisture content, the development of dry biomass and crop yield under different levels of fertility for quinoa as well as the combined effect of fertility stress and water stress. This study shows that the semi-quantitative approach that AquaCrop has, model appropriate the behavior for quinoa production conditions and that the model can be applied with certainty levels after calibrated to simulate crop production under different fertility levels in various environmental conditions without requiring detailed information of content of nutrients in the soil, making it useful and applicable for use; in local conditions where soil information is limited.

Downloads

Download data is not yet available.

References

[1] FAO, Quinoa: An ancient crop to contribute to world food security, 2011.

[2] W. Rojas, J.L. Soto, E. Carrasco, Study on social, environmental and economic impacts of quinoa promotion in Bolivia, 2004.

[3] J.W. Jones, The DSSAT cropping system model, 2003.

[4] D.H. Fleisher, Crop Models - In Open Field, 2009.

[5] S. Graeff, J. Link, J. Binder, W. Claupein, Crop models as decision support systems in crop production, 2012.

[6] L. Ahuja, L. Ma, T. Howell, Agricultural system models in field research and technology transfer, 2002.

[7] C. Saavedra, Modelacíon de los efectos del cambio climatico en tres zonas productoras de quinua (Chenopodium quinoa Wild.) del altiplano boliviano para identificar opciones de adaptación, La Paz – Bolivia, 2011.

[8] S. Geerts, Deficit irrigation strategies via crop water productivity modeling: Field research of quinoa in the Bolivian Altiplano, Katholieke Universiteit Leuven, 2008.

[9] R. Miranda, H. Mendoza, E. Yucra, Abonamiento orgánico y riego suplementario en el cultivo de quinua, Suelos Ecuatoriales, 2012.

[10] R. Murillo, Comportamiento del nitrógeno proveniente de fertilizantes minerales en el cultivo de la quinua (Chenopodium quinoa Willd.) bajo condiciones de riego y secano. La Paz – Bolivia, Universidad Mayor de San Andrés, 1995.

[11] P. Mamani, Exportación y balance de nitrógeno en el cultivo de quinua (Chenopodium quinoa Willd.) bajo diferentes niveles de abono en la comunidad de Callapa, La Paz – Bolivia, Universidad Mayor de San Andrés, 2011.

[12] H. Van Gaelen, A. Tsegay, N. Delbecque, N. Shrestha, M. Garcia, H. Fajardo, R. Miranda, E. Vanuytrecht, B. Abrha, J. Diels, D. Raes, A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure, Journal of agricultural science, 2014.

[13] G. Walburg, M.E. Bauer, C.S.T. Daughtry, Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies, Indiana – USA, 1981.

[14] P. Steduto, R. Albrizio, Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: Water use efficiency and comparison with radiation use efficiency, 2005.

[15] D. Molden, T. Oweis, P. Steduto, P. Bindraban, M. Hanjra, J. Kijne. Improving agricultural water productivity: Between optimism and caution. 2009.

[16] P. Krause, D.P. Boyle, F. Bäse, Advances in Geosciences Comparison of different efficiency criteria for hydrological model assessment, Advances In Geosciences, 2005.

[17] K. Loague, R.E. Green, Statistical and graphical methods for evaluating solute transports models: Overview and application, Journal of Contaminant Hydrology, 1991.

[18] C.J. Willmott, On the evaluation of model performance in physical geography,1984.

[19] D.R. Legates, G.J. McCabe, Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resourses Research, 1999.

[20] R. Miranda, Adubação Orgânica Em Condições De Irrigação Suplementar E Seu Efeito Na Produtividade Da Quinua (Chenopodium Quinoa Willd) No Planalto Da Bolívia. 2012.

[21] P. Ramos, C. Márquez, Avances en la calidad ambiental. Salamanca – España. 2002.

[22] N. Shrestha, Improving cereal production in the Terai region of Nepal. Assessment
of field management strategies through a model based approach. 2014.

[23] M. Bitri, S. Grazhdani, A. Ahmeti, Validation of the aquacrop model for full and deficit irrigated potato production in environmental condition of Korça zone, 2014.

[24] C. Canedo, Análisis regional de frecuencias y proyección del requerimiento de agua en áreas productoras de quinua (Chenopodium quinoa willd.) bajo condiciones de cambio climático en el altiplano de Bolivia, La Paz – Bolivia, Universidad Mayor de San Andrés, 2014.

[25] FAO, AquaStat, 2013.

[26] T. Oweis, A. Hachum, Supplemental irrigation. A highly efficient water-use practice, Aleppo – Siria, 2012.

[27] F. Zuazo, Evaluación de la actividad microbiana y la mineralización de nitrógeno en macetas bajo diferentes niveles de abono orgánico y régimen de humedad en el cultivo de quinua (Chenopodium quinoa Willd.) Viacha - La Paz, La Paz – Bolivia, Universidad Mayor de San Andrés, 2013

Published

2016-12-30

How to Cite

Fajardo, H., García, M., Raes, D., & Van Gaelen, H. (2016). Validation Of The Aquacrop Model For Different Levels Of Fertilization On Quinoa Crop In The Bolivian Highlands. Revista CINTEX, 21(2), 31–52. Retrieved from https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/16

Issue

Section

RESEARCH PAPERS