Heptane and Dodecane as surrogates of diesel fuel, a comparison with Computational Fluid Dynamics (CFD)

  • A. L. Delgado-Mejia Magister en Ingeniería: Energética – Ingeniero Mecánico. Institución Universitaria Pascual Bravo
  • L. C. Olmos-Villalba Magister en Ingeniería: Energética – Ingeniero Mecánico. Institución Universitaria Pascual Bravo
Palabras clave: CFD, combustible sustituto, diésel, inyección, chorro


This paper has made a comparative study between two reference fuels such as n-heptane and  n-dodecane,  both  widely  used  as  surrogates  for  diesel  fuel  in  several  studies concerning  on  injection,  combustion  and  emissions  formation  in  CI  engines.  In  order  to achieve  this  it  has  been  simulated  the  injection,  evaporation  and  auto  ignition  of  both fuels, using a Computational Fluid Dynamics (CFD) package. Results have been validated with experimental data provided by SANDIA laboratories, conducted at different operating conditions and with different fuels. The comparison is made in terms of typical parameters such as liquid penetration length, the flame lift-off and the ignition delay time.Results  indicated  that  there  are  a  good  concordance  between  CFD  simulation  and experimentation, when each surrogate fuel is compared. Nevertheless, when they were compared  to  D2  fuel,  the  n-heptane  was  the  surrogate  that  best  matched  the  D2  fuel behavior, in terms of Lift-Off length and ignition delay time.



La descarga de datos todavía no está disponible.


[1] X. You, F.N. Egolfopolous, H. Wang, Proceedings of the Combustion Institute 32 (2009) 403–410

[2] C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, E.J. Silke, Combustion and Flame 156 (2009) 181–199

[3] D. Sheen, W. Tsang. A comparison of literature models for the oxidation of normal heptane. Combustion and Flame 161 (2014) 1984–1992

[4] C. Baumgarten. Mixture Formation in Internal Combustion Engines. Editorial Sprin-ger, Berlin, 2006

[5] S. Ayyapureddi, U. Egüz, C. Bekdemir, L.M.T. Somers, L.P.H. de Goey,Application of the FGM method to Spray A conditions of the ECN database, ICLASS 2012, in: 12th Trienniel International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2–6 September 2012

[6] Y. Pei, et al. A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method. Flow, Turbulence and Combustion. September 2013, Volume 91, Issue 2, pp 249-280

[7] S. Bhattacharjee, D. Haworth. Simulations of Transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame 160 (2013) 2083–2102

[8] M. Meijer, et al. Engine Combustion Network (ECN): Characterization and Comparison of Boundary Conditions for Different Combustion Vessels," Atomization and Sprays, Vol. 22, No. 9, pp. 777-806

[9] S. Som, et al. Three dimensional simulationsof diesel sprays using n-dodecane as a surrogate. Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Storrs, CT, 9–11 October2011

[10] R. Payry, et al. Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering 35 (2012) 185-195

[11] OpenFoam User Guide. Version 2.01, September 2011

[12] S. Arshad. Descriptions and comparisons ofsprayFoam, reactingParcelFoam, and basicSprayCloud, basicReactingCloud, Project Work. Chalmers University of Technology. 2014

[13] R. D. Reitz. Modelling Atomization Process in High Pressure Vaporizing Sprays. Atomization and Spray Technology, Vol 3:309-337, 1987

[14] R. D. Reitz, Bracco F. V. Mechanism of Atomization of Liquid Jets. The Physics of Fluid, Vol 25, p1730-1742, 1982

[15] R. D. Reitz, R. Diwakar. Effect of Drop Breakup on Fuel Sprays. SAE Paper 860469

[16] W. Yuan, et al. “Spray, ignition and combustion modeling of biodiesel fuels for investigating NOX emissions”. Transactions of the ASAE.Vol. 48. 2005. pp. 933-939

[17] G. Stiesch. Modelling Engine Spray and Combustion Processes. Springer, Hannover, 2003.

[18] J. Warnatz, U. Maas U, R. Dibble. Combustion, physical and chemical fundamentals, modelling and simulation, experiments pollutant formation. Springer, 4th edition. Berlin, 2006

[19] M. Halstead M., et al. The Autoignition of Hydrocarbon Fuels at High Temperature and Pressures – Fitting of a Mathematical Model. Combust Flame, Vol 30, pp 45-60, 1977

[20] D. C. Kong, et al. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulations. SAE Paper 950278

[21] E. M. Sazhina, et al. A Detailed Modelling of the Spray Ignition Process in Diesel Engines. Combustion Science and Technology, vol 160, pp 317-344, 2000

[22] N. Nordin. Complex Chemistry Modeling of Diesel Spray Combustion. Doctoral Thesis, Chalmers University of Technology, Goteborg, 2001

[23] Sandia National Laboratories. Engine Combustion Network (share.sandia.gov/ecn)

[24] L.M. Pickett, et al. Relationship between Ignition Process and the Lift-Off Length of Diesel Fuel Jets SAE 2005-01-3843 (2005)

[25] D. Siebers, B. Higgins. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions. SAE Technical Paper 2001-01-0530

[26] S. Turns. An introduction to combustion, concepts and applications, 2a edition. Mc-Graw-Hill. New York, 2000
Cómo citar
Delgado-Mejia, A. L., & Olmos-Villalba, L. C. (2015). Heptane and Dodecane as surrogates of diesel fuel, a comparison with Computational Fluid Dynamics (CFD). Revista CINTEX, 20(1), 97-110. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/32