Mineralogía del proceso de biooxidación de pirita para la recuperación de oro

  • Juan David Ospina Correa Institución Universitaria Pascual Bravo
  • Erica Mejía Restrepo
  • Laura Osorno Bedoya
  • Jim Giraldo Builes
  • Marco Antonio Márquez Godoy
Palabras clave: Potencial redox, A. ferrooxidans, bioprocesos, SEM/EDS, FTIR


Una muestra de concentrados de pirita, proveniente del sector minero de Marmato, Caldas (Colombia), con dos distribuciones de tamaño de partícula, pasante malla y Tyler 200 y 325, se sometió a un proceso de biooxidación....


La descarga de datos todavía no está disponible.


[1] Addler, H.H. & Kerr, P.F. Variations In infrared spectra, molecular symmetry of sulfate minerals. The American Mineralogist Vol. 50.132-147.1965.

[2] ASTM D2799 – 11 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal 2009.

[3] Ballester, A. 2005. Mecanismo de la biolixiviación. Fundamentos y perspectivas de las tecnologias.

[4] Minerias. Valparaiso: Ediciones Universitarias de Valparaiso, pp. 9-24.

[5] Baron, D. & Palmer, C.D. Solubility of jarosite at 4-35°C, Geochimica et Cosmochímica Acta, vol. 60, pp. 185-195. 1996.

[6] Bennett, J.C. & Tributsch, H. J. Bacterial leaching patterns on pyrite crystal surfaces bacteriañ 134:310-317.1978.

[7] Blight K, Ralph D.F. & Thurgate S. Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy. Vol 58. Pp 227-237. 2000.

[8] Fowler T.A., Holmes P.R. & Crundwell F.K. Mecchanism of Pyrite Dissolution in the Presence of thiobacillus ferroxidans Applied and Environmental Microbilogy. Pp 2987-2993.1999.

[9] Fowler T.A., Holmes P.R. & Crundwell F.K. On the kinetics and mechanismo of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans Hydrometallurgy. Vol 59. Pp 257-270. 2001.

[10] Harneit K.A., Kock Goksel, D., Klick J. H., Gehrke T. & Sand W. Adhesion to metal silfide surfaces by cells of A. Ferrooxidans Acidithioballus thiooxidans and Leptospirillum ferrooxidans Hydrometallurgy. Vol 83, Pp 245-254. 2006.

[11] Ivarson K.C. Microbological formation of basic ferric sulfates Canadian journal of Soil Science 53 Pp 315-323. 1973.

[12] Johnson D. Barrie & Hallberg Kevin B. Acid mine drainage remediation options: a review. Sciencie of the Total Enviroment. Vol 338. Pp 3-14. 2005.

[13] Karavaiko Grigordi, Turova Tatyana P., Kondrateva Tamara F. Lysenko Anatoli M., Kolganova Tatyana V., Ageeva Sverlana N., Muntyan Lyudmila N. & Pivovarova tatyana A. Phylogenetic heterogeneity of the species A. ferooxidans International Journal of Systematic and Envolutionary Microbiology. Vol 53. Pp.113-119. 2003.

[14] Katrina J. E, Hu, Bo, Hamers, R. & Banfield, J. A. new look at microbial leaching patterns on solfide minerals FEMS Microbiology Ecology 34. Pp197-206. 2001.

[15] Kirby Carl S. & Elder Brady Jennífer A. Field determination of Fe2 oxidantion rates in acid mine drainage using a continuously – stirred tank reactor. Applied Genhecmistry. Vol. 13. No. 4. Pp. 509-520, 1998.

[16] Lazaroff, N.; Sigal, W. & Wasserman, A. Iron Oxidation and precipitation of ferric hydroxuslfates by resting Thiobacillus ferroocidans cells. Applied Envioremental Microbiology. Vol. 1. Pp924-938. 1982.

[17] Luptakova Alena & Kusnierova Maria. Bioremediation of acid mine drainage contaminated by SRM. Hydrometallurgy. Vol 77. Pp 97 -102. 2005.

[18] McKibben, M, A., & H. L. Barnes. Oxidation of Pyrite on low temperature acidic solution:rate laws and surface textures Geochim. Cosmochim. Acta 50 Pp 1509-1520. 1986.

[19] Meruane Gabriel & Vargas Tomas . Bacterial Oxidation of Ferrous iron by A. Ferrooxidans in the pH range 2.5-7.0. Hydrometallurgy. Vol 71. Pp 149-158, 2003.

[20] Murphy Riley & Strongin Daniel R. Surface reactivity of pyrite and related sulfides. Surface Science Reports. Vol 64. Pp 1-45. 2009.

[21] Music, S., Orehovec, Z. & Popovic, S. Structural properties of precipitates formed by hydrolysis of Fe3* íons in Fe2(SO4)3 Solutions. Journal of Materials Science. Vol. 29: 1991-1998. 1994.

[22] Naumann D. & Helm D. Indetification of some bacterial cell components by FT- IR Spectroscopy. FEMS Microbiology Letters 16:75-79. 1995.

[23] Prayouenyong P. Coal biodesulphurization. Journal Science Technology 24, 493-507. 2002.

[24] Rawlings D. E., Tributsch H. & Hansford G. S. Reasons why “Leptospirillum” Like species rather than Thiobacillus ferrooxidansare the dominant íronoxidizing bacteria in many commercial processes for the biooxidation of pyrite and related otes. Microbiology. Vol 145. Pp 513. 1999.

[25] Rawlings D.E. & Johnson B.D. Biomining. Springer – Verlag Berlín Heidelberg. 2007.

[26] Rawlings Douglas E. The molecular genetics of Thiobacillus Ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, íron – or sulfuroxidizing bacteria. Hydrometallurgy. Vol. 59. Pp 187 -201. 2001

[27] Sand, W., Gerke, T., Hallmann, R. & Schippers, A. Sulfur chemistry, biofilm, and the (in) direct attack mechanism a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology (Historical Archive). Vol. 43: Pp961-966. 1995.

[28] Sasaki, K. Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. The Canadian Mineralogist, vol. 35, Pp. 999-1008. 1997.

[29] Sasaki, K., Konno, H, Characterization of argentojarosite formed from biologically oxidized Fe3* Ions. The Canadian Mineralogist Vol. 38: Pp45-56. 2000.

[30] Sharma P.K. & Hanumantha K. Rao. Miner. Surface Charcterisation of bacterial cells relevant to mineral industry. Metal. Process., 22(1). Pp 31-37. 2005.

[31] Sharma, D., Wdahwa, G. Demineralization of coal by stepwise bioleaching a comparative study of three Indian coals by fourier Transform Infra-Red and X-ray diffraction techniques. World Journal of Microbiology & Biotechnology, 13: 29-36. 1997.

[32] Silverman Melvin P. Mechanism of Bacterial Pyrite. Oxidation Journal of Baceriology. Pp 1046-1051. 1967.

[33] Suzuki Isamu, Lee Douglas, Mackay Byron, Harahuc Lesia, & Oh Jac Key. Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sullfur by Thiobacillus Thiooxidans Applied and Envirommental Microbiology. Pp. 5163-5168. 1999.

[34] Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 20TH Ed. 1999.

[35] Tributsch, H. & Rojas – Chapana, J. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. Electrochemica Acta. 45: Pp4705-4716. 2000.

[36] Tuovinen, O., Kelly. D. Studies on the growth of Thiobacillus Ferrooxidans. Arch. Microbiol. 88: 285-298. 1973.

[37] Vardanyan N. S. & Akopyan V. P. Leptospirillum – Like Bacteria and Evaluation of Their Role in Pyrite Oxidation. Microbiology, Vol. 72. No. 4. Pp. 438-442. 2003.

[38] Williamson, M.A., & J. D, Rimstidt. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation Geochim. Cosmochim. Acta 58. Pp 5443-5454, 1994.

[39] Xia L., Liu J, Xiao L., Zeng J., Lí B., Geng M. & iu G. Single and cooperative bioleaching of sphalerite by two kinds of bacteria – Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China. 18, Pp 190-195. 2008.
Cómo citar
Ospina Correa, J. D., Mejía Restrepo, E., Osorno Bedoya, L., Giraldo Builes, J., & Márquez Godoy, M. A. (2012). Mineralogía del proceso de biooxidación de pirita para la recuperación de oro. Revista CINTEX, 17, 26-42. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/65

Artículos más leídos del mismo autor/a