Las espumas metálicas

  • Asdrúbal Valencia Giraldo Ingeniería de Materiales, Universidad de Antioquia
Palabras clave: Materiales porosos, espumas metálicas, absorción de energía, catalizadores, electrodos porosos

Resumen

Se hace una revisión de las espumas metálicas –que son materiales caracterizados por su baja densidad en combinación con propiedades únicas–, sus características, métodos de fabricación, técnicas de caracterización, modelamiento y aplicaciones estructurales, térmicas, catalíticas y como biomateriales y electrodos porosos con múltiples usos.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] J. Banhart. “Light-metal foams – history of innovation and technological challenges.” Advanced Engineering Materials, vol. 15, pp. 56-99, Mar. 2013.
[2] M.A.; De Meller. “Produit métallique pour l'obtention d'objets laminés, moulés ou autres, et procédés pour sa fabrication.” 1925. French Patent 615 147, 1926.
[3] B. Sosnick. “Process for Making Foamlike Mass of Metal.” U.S. Patent 2 434 775, 1948.
[4] Bjorksten Laboratories. Internet: www.bjorksten.com, [Oct.15, 2012].
[5] J.C., Elliott. “Method of producing metal foam.” U.S. Patent 2 751 289, 1956.
[6] J.C., Elliott. “Metal foaming process.” U.S. Patent 3 005 700, 1960.
[7] J. Banhart. “Manufacturing Routes for Metallic Foams.” JOM, Vol. 52, p. 22, Dec. 2000
[8] Hydro. Internet: www.hydro.com
[9] Cymat. Internet: www.cymat.com
[10] L.D., Kenny. “Mechanical Properties of Particle Stabilized Aluminum Foam.” Mater. Sci. Forum, Vols. 217-222. 1996.
[11] J.J., Banhart, A., Baumeister, M., Melzer, G., Weber. German Patent 19813176.
[12] V.D.C., Gegerly, and T..W., Clyne. “The FormGrip Process: foaming of reinforced metals by gas release in precursors.” Adv. Eng,. Mat., Vol. 2. p. 175. 2000.
[13] V.I., Torres. “Desarrollo y análisis de un modelo numérico para el estudio de elementos tubulares sometidos a impacto.” p. 46, Ingeniería Técnica Industrial: Mecánica, Universidad Carlos III, Madrid, 2011.
[14] J. Banhart. “Production Methods for Metallic Foams,” in Metal Foams/Fraunhofer USA Symposium «Metal Foam», Stanton Delaware, 1998, pp. 7-8.
[15] Q.L., Ma, and Z.L., Song. “Cellular structure control of aluminium foams during foaming process of aluminium melt.” Scripta. Materialia, Vol. 39, No. 11, p. 1523, 1998.
[16] T.M., Miyoshi, S. Itoh. Akiyama and A. Kitahara, “Aluminum Foam, «Alporas»: The Production Process, Properties and Applications.” MRS Proceedings, Vol. 521, p.133. 1998.
[17] K. Kadoi. “Methodology for the In Situ Observation of Alporas Foams using X – Ray Radioscopy.” 2007. Porous Metals and Metallic Foams, FoamMet, L. P. Lefevre, J. Banhart and D. C. Dunand (eds.), DESTech Publications, Lancaster. p. 111, 2007.
[18] V. Shapovalo. “Formation of Ordered Gas – Solid Structures Via Solidification in Metal-Hydrogen Systems.” Porous and Cellular Materials for Structural Applications, D.S. Schwartz et al (eds.). MRS, Warrendale, PA, Vol. 521, p. 281, 1998.
[19] J.M., Aprill. “Gasar Porous Metals Process Control.”. Porous and Cellular Materials for Structural Applications, D.S. Schwartz et al (eds.). MRS, Warrendale, PA, Vol. 521, p. 291, 1998.
[20] C.J., Paradies, A., Tobin and J. Wolla. “The Effect of Gasar Processing Parameters on Porosity and Properties in Aluminum alloy.” Porous and Cellular Materials for Structural Applications, D.S. Schwartz et al (eds.). MRS, Warrendale, PA, Vol. 521, p. 297, 1998.
[21] Kennedy, Andrew. “Porous Metals and Metal Foams Made from Powders.” Powder Metallurgy, K. Kondoh (ed.), InTech Books, Rijeka, Croatia, 2012, p. 31.
[22] Duarte, Isabel and Mónica Oliveira. “Aluminium Alloy Foams: Production and Properties.” Powder Metallurgy, K. Kondoh (ed.), InTech Books, Rijeka, Croatia, 2012, p. 47.
[23] Baumgärtner, F., I. Duarte, and J. Banhart. “Industrialization of powder compact foaming process.” Adv. Eng. Mater, Vol. 2, p. 168, 2000.
[24] Baumeister, J. et al. “Investigations on 4 New Methods for Aluminum Foam Production.”, Porous Metals and Metallic Foams, FoamMet 2007, L. P. Lefevre, J. Banhart and D. C. Dunand (eds.), DESTech Publications, Lancaster, PA, 2007, p. 11
[25] Ashby, M. F. et al, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, 2000, p. 29.
[26] Verbist, G. and D. Weaire, “A Soluble Model for Foam Drainage”, Europhys. Lett. Vol. 26, 1994, p. 631.
[27] Verbist, G., D.Weaire and A.M. Kraynik, "The foam drainage equation." J. Phys.: Condensed Matter, Vol. 8, p. 3715, 1996.
[28] Weaire, D. and S. Hutzler, “The Physics of Foams. Clarendon Press.” P. 75, Oxford, 1999.
[29] Cox, S. J., et al., “Applications and generalizations of the foam drainage equation.” Proc. R. Soc.Lond. A, Vol. 456, p. 2441, 2000.
[30] Cox, S. J., G. Bradley and D. Weaire, “Metallic foam processing from the liquid state: The competition between solidification and drainage.” Euro. J. Phys: Applied Physics, Vol. 14, p. 87, 2001.
[31] Weaire, D., S. J. Cox and J. Banhart, “Methods and Models of metallic Foam Fabrication.” Proc. 8th Ann. Intl. Conf. Composites Engng., D. Hui (ed), p. 977, Tenerife, 2001.
[32] Mohanty, K. K., J.M. Ottino and H.T. Davis, “Reaction and transport in disordered composite media: Introduction of percolation concepts.” Chemical Engineering Science, Vol. 37, p. 905, 1982.
[33] Fourie, J. G. and J. P. DuPlessis, “Pressure drop modelling in cellular metallic foams.” Chemical Engineering Science, Vol. 57, p. 2781, 2002.
[34] Lu, T. J., Stone, H. A. and& Ashby, M. F., “Heat transfer in open-cells metal foams.” Acta Materialia, Vol. 46, p. 3619, 1998.
[35] Bastawros, A. F., Evans, A. G. and Stone, H. A, “Evaluation of cellular metal heat transfer media.” Report MECH 325, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 1998.
[36] Ashby, M. F. et al, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, 2000, p. 80.
[37] Hansen, A. et al., “Validation of constitutive models applicable to aluminum foams.” International Journal of Mechanical Sciences, Vol. 44, p.359, 2002.
[38] Deshpande, V., and N., “Isotropic constitutive models for metallic foams.” Journal of the Mechanics and Physics of Solids, Vol. 48, p. 1253, 2000.
[39] Miller., “A continuum plasticity model for the constitutive and indentation behavior of foamed metals.” International Journal of Mechanical Sciences, Vol. 42, p. 729, 2000.
[40] Schreyer, H., Zuo, Q. and A. Maji, “Anisotropic plasticity model for foams and honeycombs.” Journal of Engineering Mechanics, Vol. 120, No. 9, p. 1913, 1994.
[41] Ehlers, W. Metalsch]aume-metal foams. Report 99-II-6, Institut für Mechanik, Universität Stuttgart. Sttugart. 1999.
[42] Tagariellia, V. L. et al., “A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood.” International Journal of Mechanical Sciences, Vol. 47, p. 666, 2005.
[43] Irausquin Castro, Ignacio Alejandro. “Caracterización mecánica de espumas metálicas y su aplicación en sistemas de absorción de energía.” Tesis doctoral, Ingeniería Mecánica, Universidad Carlos III, Madrid, 2012, p. 42.
[44] Onck, P. R., “Application of a continuum constitutive model to metallic foam DEN-specimens in compression.” International Journal of Mechanical Sciences, Vol. 43, p. 2947, 2001.
[45] Chen, C. and T. J. Lu, “A Phenomenological Framework of Constitutive Modeling for Incompressible and Compressible Elasto-Plastic Solids.” Intl. J. Solid. Struct., Vol. 37, p. 7769, 2000.
[46] Forest, S. “Continuum modeling of strain localization phenomena in metallic foams.” J. Mat. Sc., Vol. 40, p. 5903, 2005.
[47] Meguid S. A., S.S. Cheon and N. El-Abbasi, “FE modelling of deformation localization in metallic foams.” Finite Elements in Analysis and Design, Vol. 38, p. 631, 2002.
[48] Reyes, A. et al., “Implementation of a Constitutive Model for Aluminum Foam, Including Fracture and Statistical Variation of Density.” 8th International LS – DYNA Users Conference, Strasbourg, 2011, pp. 6–11.
[49] Yu Jilin, Wang Erheng and Guo Liuwei, “A Theoretical and Experimental Study on the Dynamic Constitutive Model of Aluminum Foams.” Materials Science Forum, Vols. 638-642, p. 1878, 2010.
[50] Fleck, N. A. et al, “The effect of hole size upon the strength of metallic and polymeric foams.” J. Mech. Phys. Solids, Vol. 49, p. 2015, 2001.
[51] Zhu, Aiyu and· Tianyou Fan, “The effects of relative density of metal foams on the stresses and deformation of beam under bending.” Acta Mech Sin, Vol. 23, p. 409, 2007.
[52] Ramamurty, U. and A. Paul, “Variability in mechanical properties of a metal foam.” Acta Materialia, Vol. 52, p. 869, 2004.
[53] Gibson, L. J. and Ashby, M. F. Cellular Solids, Pergamon Press, Oxford, 1988.
[54] Kováčik, J. and Simančík F., “Aluminium foam - modulus of elasticity and electrical conductivity according to percolation theory.” Scripta Mater., Vol. 39, No. 2, p. 239, 1998.
[55] Schwartz, D. S., et al., “Development and scale up of the Low-Density- Core process for Ti-64.” MRS Symposium Proceedings, D.S. Schwartz et al. (eds.), Vol. 521, Materials Research Society, Warrendale, Pennsylvania, 1998, p. 225.
[56] Srivastava, V. C. and K. L. Sahoo, “Processing, stabilization and applications of metallic foams. Art of science.” Materials Science-Poland, Vol. 25, No. 3, p. 733, 2007.
[57] Yu, C. – J. and J. Banhart, “ Mechanical Properties of Metallic Foams,” Proceedings of the Fraunhofer USA symposium on metallic foams, J. Banhart and H. Eifert (eds.), MIT-Verlag, Bremen, 1998, p. 37.
[58] Imatani, S., “Numerical Evaluation of Compressible Plasticity Behaviour of Metal Foams.” Tecnnische Mechanick, Vol. 32, Nos. 2-5, p. 265, 2012.
[59] Simancik, F., “Metallic foams – ultra light materials for structural applications.” Inzynieria Materialowa, No. 5, p. 823, 2001.
[60] Simone, A. E. and L. J. Gibson, “Effects of Solid Distribution on the Stffness and Strength of Metallic Foams.” Acta Mater, Vol. 46, No. 6, p. 2139, 1998.
[61] Simone, A. E. and L. J. Gibson, “The Effects of Cell Face Curvature and Corrugations on the Stiffness and Strength of Metallic Foams.” Acta Mater, Vol. 46, No. 11, p. 3929, 1998.
[62] Motz, C. and R. Pippan, “Fracture behaviour and fracture toughness of ductile closed cell metallic foams.” Acta Materialia, Vol. 50, p. 2013, 2002.
[63] Chen, C. and N.A. Fleck, “Size effects in the constrained deformation of metallic foams.” Journal of the Mechanics and Physics of Solids, Vol. 50, p. 955, 2002.
[64] Andrews, E., W. Sanders, L.J. Gibson, “Compressive and tensile behaviour of aluminum foams.” Materials Science and Engineering A, Vol. 270, p. 113, 1999.
[65] Koza, E., “Compressive strength of aluminium foams.” Materials Letters, Vol. 58, p. 132, 2003.
[66] Ashby, M. F. et al., Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, 2000, p. 63.
[67] Ashby, M. F., “The mechanical properties of cellular solids.” Metall. Trans., Vol. 14 A, p. 1755, 1983.
[68] Xu, H.J.; Qu, Z.G. & Tao, W.Q., “Thermal Transport Analysis in Parallel-plate Channel Filled with Open-celled Metallic Foams.” International Communications in Heat and Mass Transfer, Vol.38, No.7, p. 868, Aug. 2011.
[69] Qu, Z. G. “Thermal Transport in Metallic Porous Media.” Heat Transfer – Engineering Applications, Vyacheslav Vikhrenko (ed.), Intech, Rijeka, Croatia, 2011, p. 172.
[70] Ashby, M.F. et al., Metal foams: A design guide, Butterworth-Heinemann, Boston, 2000, p. 181.
[71] Hunt, M. L. and C. J. Tien, “Effects of thermal dispersion on forced convection in fibrous media.” Int. J. Heat Mass Transfer, Vol. 31p. 301, 1988.
[72] Haack , D. P. et al. “Novel Lightweight Metal Foam Heat Exchangers”, Proceedings ASME Int. Mechanical Engineering Congress Expo 2001, New York, 2001, p. 1.
[73] Qu, Z. G. “Thermal Transport in Metallic Porous Media.” Heat Transfer – Engineering Applications, Vyacheslav Vikhrenko (ed.), Intech, Rijeka, Croatia, 2011, p. 172.
[74] Reutter, O. et al., “Characterization of Air Flow Through Sintered Metal Foams.” Journal of Fluids Engineering, Vol. 130, pp. 051201-1, 2008.
[75] Bohn, D., 2002, “New Materials and Cooling Systems for High Temperature, Highly Loaded Components in Advanced Combined Cycle Power Plants.” Seventh Liege Conference on “Materials for Advanced Power Engineering, Liege, Belgium, Sept. 30–Oct. 02.
[76] Giani, Leonardo, Gianpiero Groppi, and Enrico Tronconi, “Heat Transfer Characterization of Metallic Foams.” Ind. Eng. Chem. Res., Vol. 44, p. 9078, 2005.he
[77] Álvarez Hernández, Ángel R., “Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams.” MSc. Thesis, Mechanical Engineering, University of Puerto Rico, Mayagüez, 2005.
[78] Avenall, Ryan Jeffrey, “Use of Metallic Foams for Heat Transfer Enhancement in the Cooling Jacket of a Rocket Propulsion Element.” MSc. Thesis, University of Florida, Gainesville, 2004.
[79] Boomsma, K. D. Poulikakos and F. Zwick. “Metal foams as compact high performance heat exchangers.” Mechanics of Materials, Vol. 35, p. 1161, 2003.
[80] Guo, Z. X., S. Y. Kim, and H. J. Sung. “Pulsating flow and heat transfer in a pipe partially filled with a porous medium.” Int. J. Heat Mass Transf., vol. 40, pp. 4209-4218, 1997.
[81] K. C. Leong and L. W. Jin. “An experimental study of heat transfer in oscillating flow through a channel filled with an aluminum foam.” Int. J. Heat Mass Transf., vol. 48, pp. 243-253, 2005.
[82] Jin, L. W. and K. C. Leong. “Heat Transfer Performance of Metal Foam Heat Sinks Subjected to Oscillating Flow.” Trans Comp Packaging Techn., Vol. 29, No. 4, p. 856, 2006.
[83] Sadeghi, Eshan. “Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams.” PhD. Thesis, University of Victoria, Victoria, 2010.
[84] Twigg, M. V. and D. E, Wbster, “Metal and coated-metal catalysts.” Structured Catalysts and Reactors, A. Cybulski, ans J.A. Moulijn, (eds.), Marcel Dekker Inc., New York, p. 59, 1998.
[85] Gryaznov, V.M. and N.V. Orekhova, "Reactors with Metal and etal-Containing Membranes." Structured Catalysts and Reactors, A. Cybulski, and J.A. Mouljin (eds.), Marcel Dekker, Inc., New York, p. 435, 1998.
[86] Matatov-Meytal, Yu. and M. Sheintuch. “Catalytic fibers and cloths.” Applied Catalysis A: General, Vol. 231, Nos. 1-2, p. 1, 2002.
[87] Voecks G. E., “Unconventional utilization of monolithic catalysts for gas-phase reactions.” Structured Catalysts and Reactors, A. Cybulski, J.A. Moulijn (eds.), Marcel Dekker Inc., New York, 1998, p. 179.
[88] Buciuman, F. C. and B. Kraushaar-Czarnetzki, “Preparation and characterization of ceramic foam supported nano - crystalline zeolite catalysts.” Catal. Today, Vol. 69, 2001, p. 337.
[89] Sanz, Oihane et al., “Aluminium foams as structured supports for volatile organic compounds (VOCs) oxidation.” Applied Catalysis A: General, Vol. 340, p. 125, 2008.
[90] Podyacheva, O. Yu. et al. “Metal Foam Supported Perovskite Catalysts.” React. Kinet. Catal. Lett., Vol. 60, p. 243, 1997.
[91] Wang, Y., and Tonkovich, A. L. Y., “Catalysts Reactors and Methods of Producing Hydrogen via the Water-Gas Shift Reaction.” U.S. Patent 6 652 830, Nov. 25, 2003.
[92] Pestryakov, A. N. et Al, “Foam Metal Catalyst for Purification of Waste Gases and Neutralization of Automotive Emissions.” Catal. Today, Vol. 29, p. 67, 1996.
[93] Campbell, L. E., “Catalyst for the Production of Nitric Acid by Oxidation of Ammonia.” U.S. Patent 5 256 387, Oct. 26, 1993.
[94] Pestryakov, A. N. et al., “Selective Oxidation of Alcohols over Foam-Metal Catalysts.” Appl. Catal., A: Gen.Vol. 227, p.125, 2002.
[95] Pestryakov, A. N. et al, “Metal Foam Catalyst with Supported Active Phase for Deep Oxidation of Hydrocarbons.” React. Kinet. Catal. Lett. Vol. 54, p. 167, 1995.
[96] Richardson, J. T., Garrait, M. and Hung, J. K., “Carbon Dioxide Reforming with Rh and Pt-Re Catalysts Dispersed on Ceramic Foam Supports.” Appl. Catal., A: Gen., Vol. 255, p. 69, 2003.
[97] Wang, Y. et al, “Catalyst Structure and Method of Fischer-Tropsch Synthesis.” U.S. Patent 6 660 237, Dec. 9, 2003.
[98] Giani, Leonardo, Gianpiero Groppi, and Enrico Tronconi, “Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts.” Ind. Eng. Chem. Res., Vol. 44, p. 4993, 2005.
[99] Kodama, T. et al, “Solar Methane Reforming Using a New Type of Catalytically Activated Metallic Foam Absorber.” Transactions of the ASME, Vol. 126, p. 808, 2004.
[100] Ghidossi, Rémy et al., “Separation of particles from hot gases using metallic foams.” Journal of Materials Processing Technology, Vol. 209, p. 3859, 2009.
[101] Barbucci, R., Integrated Biomaterial Science, Hingham, MA, USA, Kluwer Academic Publishers, 2002.
[102] Pilliar, R. M., “Powder metal-made orthopedic implants with porous surfaces for fixation by tissue ingrowth.” Clin Orthop Rel Res, Vol. 176, p. 42, 1983.
[103] Pilliar, R. M., “Porous-surfaced metallic implants for orthopedic applications.” J. Biomed Mater Res, Vol. A1, p. 1, 1987.
[104] Zardiackas, L. D. et al. “Structure, metallurgy, and mechanical properties of a porous tantalum foam.” J. Biom. Mat. Res., Vol. 58, No. 2, p. 180, 2001.
[105] Clemow, J. T. et al., “Interface mechanics of porous titanium implants.”, J. Biom. Mat. Res., Vol. 15, p. 73, 1981.
[106] Wen, C. E., Y. Yamada and P. D. Hodgson, “Fabrication of novel metal alloy foams for biomedical applications.” Materials Forum, Vol. 29, p. 274, 2005.
[107] McCabe, J.F. and Ogden, A.R., “The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials.” Dent. Mater, Vol. 3, p. 9, 1987.
[108] Huysmans, M.C. et Al., “The influence of simulated clinical handling on the flexural and compressive strength of posterior composite restorative materials.” Dent. Mater, Vol. 12, p.116, 1996.
[109] Yue, S., R. M. Pilliar and G. C. Weatherly, “The fatigue strength of porous-coated Ti-6% Al-4% V implant alloy.” J. Biomed. Mater. Res., vol. 18, p. 1043, 1984.
[110] David, H. K. and Paul, D., “A parametric study of the factors affecting the fatigue strength of porous coated Ti-6A1-4V implant alloy.” J. Biomed. Mater. Res., Vol. 24, p. 1483, 1990.
[111] Crowninshield, R. D., “Mechanical properties of porous metal total hip prostheses.” Instr. Course Lect., Vol. 35, p. 144, 1986.
[112] Manley, M.T., et al., “Effects of repetitive loading on the integrity of porous coatings”, Clin. Orthop. Relat Res., Vol. 217, p. 293, 1987.
[113] Ryan, Garrett et al. “Fabrication methods of porous metals for use in orthopedic applications”, Biomaterials, Vol. 27, p. 2651, 2006.
[114] Lanza, Robert, Robert Langer and Joseph P. Vacanti, Principles of Tissue Engineering, Academic Press, New York, 2000.
[115] Saltzman, Mark W., Tissue Engineering: Engineering Principles for the Design of Replacement Organs and Tissues, Oxford University Press, New York, 2004.
[116] Assad, M, et al. “Porous titanium–nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis.” J. Biomed. Mater. Res., 64B, pp. 107–120, 2003.
[117] Li, J. P. et al., “Preparation and characterization of porous titanium.” Key Eng. Mater., Vols. 218–220, p. 51, 2002.
[118] Li, J. P. et al., “Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment.” Biomaterials. Vol. 27, p. 1223, 2006.
[119] Li, J. P. et al, “Bone ingrowth in porous titanium implants produced by 3D fiber deposition.” Biomaterials, Vol. 28, p. 2810, 2007.
[120] Yeh, C.L. and Sung, W.Y., “Synthesis of NiTi intermetallics by self-propagating combustion.” J. Alloy Comp., Vol. 376, p.79, 2004.
[121] Stevens, M. M., “Biomaterials for bone tissue engineering.” Mater. Today, Vol. 11, p. 18, 2008.
[122] Wen, C. E., Y. Yamada and P. D. Hodgson, “Fabrication of novel metal alloy foams for biomedical applications.” Materials Forum, Vol. 29, p. 274, 2005.
[123] Esen, Z., E. Tarhan Bor and S. Bor, “Characterization of loose powder sintered porous titanium and Ti6Al4V.” Turkish J. Eng. Env. Sci., Vol. 33, p. 207, 2009.
[124] Wen, C. e. et al., “Processing of Biocompatible Porous Ti and Mg.” Scripta Materialia, Vol. 45, p. 1147, 2001.
[125] Navarro, M., et al., “Biomaterials in Orthopedics.” J. R. Soc. Interface, Vol. 5, No. 27, p. 1137, 2008.
[126] Mour, Meenakshi. “Advances in Porous Biomaterials for Dental and Orthopaedic Applications.” Materials, Vol. 3, p. 2947, 2010.
[127] Nguyen, T. L. “Synthesis of Topologically Ordered Porous Magnesium.” PhD. Thesis, University of Canterbury, Canterbury, 2011.
[128] Seyedraoufi, Z. S., Mirdamadi Sh., “Synthesis, microstructure and mechanical properties of porous Mg -Zn scaffolds.” J. Mech Behav Biomed Mater. Vol. 21, p. 1, 2013.
[129] Tan, Lili et Al. “Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds.” Biomedical Materials, Vol. 4, p. 1, 2009.
[130] Kaya, M., “A Study on Microstructure and Fabrication of Porous Mg-10Al Alloy.” Materials and Manufacturing Processes, Vol. 27, No. 6, p. 605, 2011.
[131] Paserin, Vladimir et al., “The chemical vapor deposition technique for Inco nickelfoam production–manufacturing benefits and potential applications.” Cellular Metals and Metal Foaming Technology, J. Banhart, N.A. Fleck (eds.), p. 31, MIT-Verlag, Berlin 2003.
[132] Shin, Heon-Cheol and Meilin Liu, “Copper Foam Structures with Highly Porous Nanostructured Walls.” Chem. Mater., Vol. 16, No. 25, p. 5460, 2004.
[133] Shin, Heon-Chol and Meilin Liu, “Three Dimensional Porous Copper – Tin Alloy for Rechargeable Lithium Batteries.” Advanced Functional Materials, Vol. 15, No. 4, p. 582, 2005.
[134] Wang, John S. et al., “Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams.” Journal of Power Sources, Vol. 196, No. 20, p. 8714, 2011.
[135] Vu, Anh, Yuqiang Qian and Andreas Stein. “Porous Electrode Materials for Lithium-Ion Batteries – How to Prepare Them and What Makes Them.” Special Advanced Energy Materials, Vol. 2, No. 9, p. 1056, 2012.
[136] Arisetty, S., Prasad A.K., and Advani S.G., "Metal foams as flow field and gas diffusion layer in direct methanol fuel cells." Journal of Power Sources, Vol. 165, p. 49, 2007.
[137] Zheng, Wei-wei, “Preparation of porous Mg electrode by electrodeposition.” Trans Nonferrous Met. Soc. China, Vol. 21, p. 2099, 2011.
[138] Newman, J. and C.W. Tobias, “Theoretical Analysis of Current Distribution in Porous Electrodes.” J. Electrochem. Soc., Vol. 109, p. 1183, 1962.
[139] Johnson, A. M. and J. Newman, “Desalting by Means of Porous Carbon Electrodes.” J. Electrochem. Soc., Vol. 118, p. 510, 1971.
[140] Newman, J. and W. Tiedemann, “Porous-electrode theory with battery applications”, AIChE J., Vol. 21, p. 25, 1975.
[141] Newman, J. and K.E. Thomas-Alyea. Electrochemical Systems, p. 203, Wiley, New York, 2004.
[142] Conway, B. E., “Electrochemical supercapacitors.” Kluwer, New York, 1999.
[143] Dunn, D. and J. Newman, “Predictions of specific energies and specific powers of double-layer capacitors using a simplified model.” J. Electrochem. Soc., Vol. 147, p. 820, 2000.
[144] Kotz, R. and M. Carlen, "Principles and applications of electrochemical capacitors." Electrochimica Acta, Vol. 45, p. 2483, 2000.
Vol'fkovich, Y.M. and T.M. Serdyuk, “Electrochemical Capacitors.” Russ. J. Electrochem., Vol. 38, p. 935, 2002.
[145] Verbrugge, M.W. and P. Liu, “Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors.” J. Electrochem. Soc., Vol. 152, p.D79, 2005.
[146] A.M. Johnson and J. Newman, “Desalting by Means of Porous Carbon Electrodes.” J. Electrochem. Soc., Vol. 118, p. 510, 1971.
[147] Murphy, G.W. and D.D. Caudle, “Mathematical theory of electrochemical demineralization in flowing systems.” Electrochimica Acta, Vol. 12, p. 1655, 1967.
[148] Oren, Y.and A. Soffer, “Water Desalting by Means of Electrochemical Parametric Pumping: I. The Equilibrium. Properties of a Batch Unit Cell.” J. Appl. Electrochem., Vol. 13, p.473, 1983.
[149] Farmer, J. C. et al., “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes.” J. Appl. Electrochem., Vol. 26, p.1007, 1996.
[150] Spiegler, K. S. and Y.M. El-Sayed, "The Energetics of Desalination Processes."Desalination, Vol. 134, p. 109, 2001.
[151] Gabelich, C. J., T.D. Tran, and I.H. Suffet, “Electrosorption of inorganic salts from aqueous solution using carbon aerogels.” Environm. Sci. Techn., Vol. 36, p. 3010, 2002.
[152] Welgemoed, T. J. and C.F. Schutte, "Capacitive Deionization Technology: An alternative desalination solution." Desalination, Vol. 183, p.327, 2005.
[153] Biesheuvel, P. M., "Thermodynamic cycle analysis for capacitive deionization." J. Colloid Interface Sci., Vol. 332, p. 258, 2009.
[154] Biesheuvel, P.M., B. van Limpt, and A. van der Wal, “Dynamic adsorption/desorption process model for Capacitive Deionization.” J. Phys. Chem. C., Vol. 113, p. 5636, 2009.
[155] Levie, R. de, “On porous electrodes in electrolyte solutions: I. Capacitance effects.” Electrochimica Acta, Vol. 8, No. 10, p. 751, 1963.
[156] Brogioli, D., “A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes.” Phys. Rev. Lett., Vol. 103, p.058501, 2009.
[157] Biesheuvel, P.M. and M.Z. Bazant, “Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes.” Physical Review E, Vol. 81, p. 031502, 2010.
Publicado
2013-12-30
Cómo citar
Valencia Giraldo, A. (2013). Las espumas metálicas. Revista CINTEX, 18, 11-61. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/48
Sección
ARTÍCULOS / ARTICLES