Una Revisión de Sistemas de Calentamiento y Control de Temperatura para Extrusión de Polímeros

  • Gloria Cruz Docente Institución Universitaria Pascual Bravo
Palabras clave: extrusión de polímeros, sistemas de calentamiento, gas natural, control de temperatura, costo energético

Resumen

La conversión a gas puede permitir una disminución en el costo energético de 60% en procesos de extrusión de plástico. Este artículo presenta una revisión sobre iniciativas relacionadas con: calentamiento a gas del barril de extrusión, otros sistemas de calentamiento, modelado y simulación de perfiles de temperatura, procesamiento de polímeros, influencia de la temperatura de fusión en el producto extruido y control de temperatura. Por medio de este artículo se concluye que el calentamiento a gas es más eficiente que el calentamiento por resistencias eléctricas en el procesamiento de polímeros, y la importancia del desarrollo de un modelo predictivo de control de temperatura para esta conversión es resaltada

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] “Acoplásticos”, https://www.acoplasticos.org/acoplasticos2/index.php?option=-com_content&view=article&id=32&Itemid=67, 2007.

[2] RECIPE, “Reduced Energy Consumption”, Plastic Engineering, in http://www.eureci-pe.com, 2007.

[3] G. Cruz, R. Mira, “Viabilidad de la conversión a gas en extrusión de plásticos”, Me-morias III Congreso de Inteligencia Computacional, Institución Universitaria Pascual Bravo, Medellín, pp. 64-66,Sept. 2012.

[4] M. Adelt, J. Arthkamp, and H. Selbert, “Method and device for heating a plasticizing cylinder”, Patente para union Europea y Japón nº EP 1 300 233 A1, Abril 9, 2003.

[5] J. Lebaudy, M. Siter, J. Grenet, and C. Vautier, “Temperature distribution in polye-thilene terephthalate plate undergoing heat treatment”, Polymer, vol. 36, n° 6, pp. 1217-221, 1995.

[6] T. Womer, S. Walter, and R. Wheeler, “Comparison of two different cooling methods for extrusion processes”, Antec, pp. 796-799, 2006.

[7] J. Wortberg, M. Bussmann, “An alternative plastification system based on natural gas”, Journal of Plastic Technology, vol. 6, n°2, pp. 92-111, 2010.

[8] Arthkamp, J., “Natural gas in Plastic Processing”, in Kunststoffe, n° 10, pp. 89-93, 2003.

[9] G. Cruz-Riaño, B. Herrera, and J. A. Valencia, “Simulación de un quemador a gas en estado estacionario para extrusión de plástico”, I Encuentro de Tecnología e Inge-niería and IX Simposio Internacional en Energías, Universidad de Medellín, Medellín, 31 de octubre al 1° de noviembre, inédito.

[10] G. Cruz-Riaño and B. Herrera. “Volúmenes finitos aplicados en la conversión a gas para calentamiento de polímeros”, in Memorias V Congreso Internacional de For-mación y Modelación en Ciencias Básicas, Universidad de Medellín, pp. 235-236, mayo 2013.

[11] Harper, C., “Handbook of Plastic Processes”, New Jersey, USA, Wiley & Sons, pp. 11-12, 2006.

[12] Noriega, M. & Estrada, O., Instituto de Capacitación e Investigación del Plástico y el Caucho, in http://www.icipc.org. 2009.

[13] “Xaloy”, in http://www.xaloy.com, 2008.

[14] S. Derezinski, “Heat transfer coefficients in extruder melt sections”, Antec, pp. 417-421, 1996.

[15] S. Derezinski, “Calculating Power of Extruder Melt Sections”, Antec, p. 8., 1997.

[16] C. Rauwendaal, & G. Ponzielli, “Temperature development in Screw Extruders”, An-tec, p. 16, 2003.

[17] Z. Tadmor, I. Duvdevani, and I. Klein, Engineering Principles of Plasticating Extru-sion. Eng. Sci, vol. 6, n°185, pp. 202-222, 1966.

[18] Rauwendaal Extrusion Engineering, Inc, Rauwendaal, in http://www.rauwendaal.com, 2008.

[19] M. Noriega, A. Naranjo, T. Osswald, and N. Ferrier, Patente en requerimiento, expe-diente 3 12620, Colombia, 2008.

[20] M. Noriega, A. Naranjo, T. Osswald, and N. Ferrier, “Comparison of the melting be-havior of HDPE y PP in single screw extruder”, Antec, p. 8, 2011.

[21] C. Rauwendaal, “Polimer Extrusion”. München: Carl Hanser Verlag, pp. 268., 2001.

[22] K. Wilczyñski, “SSEM: a computer model for a polymer single screw extrusion”, Journals of materials processing Technology, n° 109, pp. 308-313, 2001.

[23] D. Wei, and H. Luo, “Finite elements solutions of heat transfer in molten polymer flow in tubes with viscous dissipation”, International Journal of heat and Mass Trans-fer, n° 46, pp. 3097-3108, 2003.

[24] H. Shokouhmand, and M. Soleimani, “The effect of viscous dissipation on tempera-ture profile of a power - law fluid flow over a moving surface with arbitrary injection/suction”, Energy Conversion and Management, pp. 171-179, 2011.

[25] S. Vaddiraju, et al., “Extrusion Die Design Optimization Including Viscoelastic Poly-mer Simulation”, Antec, p. 29., 2004.

[26] Y. Combeaud and B. Vergnes, “Experimental study of the volume defects in polys-tyrene extrusion”, Journal of Non-Newtonian Fluid Mechanics, n° 121, pp. 175-185, 2004.

[27] R. Assadi, and X. Colin, “Irreversible structural changes during PET recycling by ex-trusión”, Polymer, n° 45, pp. 4403-4412, 2004.

[28] H. Da Costa, V. Ramos, and C. Rocha, “Rheological properties of polypropilene du-ring multiple extrusión”, Polymer Testing, n° 24, pp. 86-93, 2005.

[29] C. Martyn, C. Nakason, and P. Coates, “Stress measurements for contracton flows of viscoelastic polymer melts”, J. Non-Newtonian Fluid Mech., n° 91, pp. 123-142, 2000.

[30] P. Bariani, M. Salvador, and G. Lucchetta, “Development of a test for the rheological characterization of polymers under the injection molding process conditions”, Jour-nal of Material Processing Technology, n° 191, pp. 119-122, 2007.

[31] Z. Chen, P. Chao, and S. Chiu, “Proposal of an empirical viscosity model for cuality control in the polymer extrusion process”, Polymer Testing, n°22, pp. 601-607, 2003.

[32] D. Baird, “First normal stress difference measurements for polymer melts at high shear rates in a slit die using hole and exit pressure data”, J. Non - Newtonian Fuid Mech., n° 148, pp. 13-23, 2008.

[33] J. Liang, “The elastic behavior during capillary extrusion of LDPE/LLDPE”, Polymer Testing, n° 21, pp. 69-74, 2002.

[34] J. Musil, and M. Zatloucal, “Experimental investigation of flow induced molecular weight fractionation during extrusion of HDPE polymer melts”, Chemical Enginee-ring Science, n°66, pp. 4814-4823, 2001.

[35] F. Predivi, M. Savaresi, and A. Paranotto, “Design of a feedback control system for real time control of flow in a single - screw extruder”, Control Engineering Practice, n° 14, pp. 345-355, 2006.

[36] C. Pujos, N. Regnier, and G. Defaye, “Determination of the inlet temperature profile of an extrusion die in unsteady flow”, Chemical Engineering and Processing, pp. 456-462, 2008.

[37] TREFLE, in http.//www.trefle.u-bordeaux1.fr/aquilón, 2005.

[38] A. Parwani, T. Prabal, and P. Subbarao, “Estimation of inlet temperature of a deve-loping fluid flow in a parall plate chanel”, International Journal of Thermal Sciences, n° 57, pp. 126-134, 2012.

[39] Z. Tadmor, S. Lipshitz, and R. Lavie, “Dynamic model of a plasticating extruder”, Polym. Eng. Sci., vol. 14, n° 2, pp. 112-119, 1974.

[40] L. Tan, A. Lofti, E. Lai & J. Hull, “Soft computing applications in dynamic model iden-tification of polymer extrusion process”, Applied soft computing, 4, pp. 345-355, 2004.

[41] C. Abeykoon, et al., “A new model based approach for the prediction and optimisa-tion of thermal homogeneity in single screw extrusion”, Control Engineering Practi-ce, n°19, pp. 862-874, 2011.

[42] K. Yao, F. Gao, and F. Allgöwer, “Barrel temperature control during operation tran-sition in injection molding”, Control Engineering Practice, pp. 1259-1264, 2008.

[43] C. Abeykoon, P. Martin, A. Kelly & E. Brown, “A rewiew and evaluation of melt tem-perature sensors for polymer extrusion”, Sensor and Actuators A, p. 12., 2012.

[44] J. Sorroche y otros, “Thermal optimisation of Polymer Extrusion using In-process Monitoring Techniques”, Applied Thermal Engineering, p. 42., 2012.

[45] X. Shen, R. Malloy and J. Pacini, “An experimental evaluation of melt temperature sensors for termoplastic extrusion”, Antec,pp. 918-926, 1992.

[46] K. Sabota, D. Lawson, and J. Huizinga, “Advanced temperature measurements in polymer extrusion”, Antec,pp. 2832-2842, 1995.

[47] I. Bruker, C. Miaw, A. Hasson and G. Balch, “Numerical analysis of the temperature profile in the melt conveying section of a single screw extruder”, Polym. Eng. Sci.,pp. 504-509, 1987.

[48] E. Brown, A. Kelly and P. Coates, “Melt temperature field measurement in single screw extrusion using thermocouple meshes”, Rev. Sci. Instrum., vol. 75, n° 11, pp. 4742-4748, 2004.

[49] A. Kelly, E. Brown, K. Howell, and P. Coates, “Melt temperature field measurement in extrusion using thermocuple meshes”, Plast. Rubb. Comp., n° 37,pp. 151-157, 2008.

[50] A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer tempe-rature measurement during extrusion molding”, Infrared Phys. Technol., n° 46,pp. 11-15, 2004.

[51] E. Brown, P. Olley and P. Coates, “In line melt temperature measurement during real time ultrasound monitoring of single screw extrusion”, Plast. Rubb. Comp., n° 29, pp. 3-13, 2000.

[52] A. Bur et al., “Temperature gradients in the channels of a single extruder”, Polym. Eng. Sci, vol. 44, n°11,pp. 2148-2157, 2004.
Publicado
2014-12-18
Cómo citar
Cruz, G. (2014). Una Revisión de Sistemas de Calentamiento y Control de Temperatura para Extrusión de Polímeros. Revista CINTEX, 19, 127-143. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/43
Sección
ARTÍCULOS / ARTICLES