Microorganismos Hierro–Azufre Oxidantes Una Alternativa Biotecnológica

  • Erica Mejía Grupo Hombre, Proyecto y Ciudad, Universidad de San Buenaventura, Medellín. Grupo Microbiología de suelo, Universidad Nacional de Colombia sede Medellín
  • Laura Osorno Grupo Microbiología de suelo, Universidad Nacional de Colombia sede Medellín
  • Juan Ospina Grupo de Investigación e Innovación Ambiental, Institución Universitaria Pascual Bravo
Palabras clave: arsenopirita, calcopirita, pirita, biooxidación, biohidrometalúrgia, biomineria

Resumen

Microorganismos hierro-azufre oxidantes juegan un papel fundamental en ambientes sedimentarios, especialmente cuando hay presencia de pirita (FeS2), calcopirita (CuFeS2), arsenopirita (FeAsS), galena (PbS) y esfalerita (ZnS). Estos microorganismos son importantes en la oxidación de un amplio rango de sulfuros metálicos en algunos suelos, sedimentos o superficies de rocas expuestas, sin importar el origen de esto minerales. La actividad microbiana oxidativa está siendo explotada industrialmente para la extracción de metales a partir de minerales. Actualmente, la bioextracción comercial de interés se centra en la recuperación de cobre, níquel, oro, plomo y cobalto. Pese a que el oro contenido en minerales sulfuros no se extrae biotecnológicamente a escala comercial, el tratamiento previo con microorganismos (biobeneficio) con el fin de eliminar la interferencia de la pirita y arsenopirita sí se hace a esta escala. Por ejemplo, la pirita encapsula oro en su estructura, por lo que lo hace inviable su recuperación química, tal como recuperación con cianuro o tiourea. Existe además un gran potencial en la bioextracción de una gran variedad de metales de los minerales que lo contienen, como el caso del cobre. Es por esto que este trabajo pretende dar una revisión general de los efectos de los microorganismos hierro azufre oxidante en los procesos de beneficio. 

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] D.E. Rawlings. Review. “Characteristics and adaptability of iron –and sulfur– oxidizing microorganisms used for the recovery of metals from minerals and their concentra-tes”, Microbial Cell Factories, 2005.

[2] J. A. Brierley, L. Luinstra, “Biooxidation-heap concept for pretreatment of refrac-tory gold ore”, In: Biohydrometallurgical Technologies, A.E. Torma, J.E. Wey & V.L. Lakshmanan Eds., The Minerals, Metals & Materials Society, pp. 437-448. 1993.

[3] H. R. Waltlin, “The bioleaching of sulphide minerals with emphasis on copper sulphi-des-A review”. Hydrometallurgy, 84, 1-2, 81-108, 2006.

[4] S. R. Gilbert, C.O. Bounds, R. R. Ice. “Comparative economics of bacterial oxidation and roasting as a pre-treatment step for gold recovery from an auriferous pyrite concentrate”, CIM Bulletin, 81, 89-94, 1988.

[5] J. Marsden and I. House, “The chemistry of gold extraction”. Ed. Ellis Horwood Limi-ted, England. 1992.

[6] M. Márquez, “Mineralogia dos processos de oxidacao sobre pressao e bacteriana do minerio de ouro da mina Sao Bento, MG”, Universidad de Brasilia, 1999.

[7] K. Bosecker, “Bioleaching: metal solubilization by microorganism”. FEMS Microbio-logy Reviews. Vol. 20, pp. 591–604. 1997.

[8] G. J. Olson, J. A. Brierley and C. L. Brierley. “Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries”,Applied Microbiology and Biotechnology, vol. 63, pp. 249–257, 2003.

[9] D. E. Rawlings, “Heavy metal mining using microbes”,Annual Review Microbiology, vol. 56, pp. 65–91, 2002.

[10] T. Rohwerder and W. Sand. “The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphiliumspp”, Micro-biology, vol. 149, pp. 1699–1709, 2003.

[11] G. Rossi. “The design of bioreactors”, Hidrometallurgy, vol. 59, pp. 217-231, 2001.

[12] H. L. Ehrlich. “Geomicrobiology: its significance for geology”. Earth-Science Re-views, vol. 45, pp. 45–60, 1998.

[13] F. Habashi, “A Short history of Hydrometallurgy”, Hydrometallurgy, vol. 79, pp. 15-22. 2005.

[14] K. L. Temple, A. R. Colmer, “The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans”, Engineering Experiment Station, West Virginia Universi-ty, Morgantown, West Virginia, 1951.

[15] F. Acevedo, “The use of reactor in biominig processes”, Electric Journal of Biotech-nology, 3, pp. 184-190. Disponible en internet: http://ejbiotechnology.uvc.cl/content/vol13/issue3/full/4/.2000.

[16] C. L. Brierley. “Biominig extracting metals whit microorganisms”, [en línea]. http://www.nae.edu/nae/pubundcom.nsf/weblinks/CGOZ-7CQRL8/$file/Biomining%20-CL%20Brierley%203_12_08.pdf. 2008.

[17] J. A. Brierley and C. L. Brierley, “Present and future commercial applications of bio-hidrometallurgy”, Hydrometallurgy, vol. 59, pp. 233–239, 2001.

[18] D. Morin, A. Lips, T. Pinches, J. Huisman, C. Frias, A. Norberg, E. Forssberg, “BioMinE –Integrated project for the development of biotechnology for metal-bearing mate-rials in Europe”, Hydrometallurgy, vol. 83, pp. 69–76, 2006.

[19] Rawlings, D. E., Heavy metal mining using microbes, Annual Review Microbiology,vol. 56. Pp. 65–91, 2002.

[20] W. Sand, T. Gehrke, R. Hallmann and A. Schippers, “Sulfur chemistry, and the (In) direct attack mechanism- a critical evalution of bacterial leaching”, Applied Micro-biology and Biotechnology. Vol. 43, pp. 961–966, 1995.

[21] P. Devasia, K. A. Natarajan, D. N. Sathyanarayana and G. Ramananda, “Surface chemistry of Thiobacillus ferrooxidans relevant to adhesión on mineral surface”, Applied and Environmental Microbiology, vol. 59, n°12, pp. 4051–4055, 1993.

[22] T. Gehrke, J. Telegdi, D. Thierry and W. Sand, “Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching”, Aplied and Environmen-tal microbiology, vol. 64, n°7, pp. 2743–2747, 1998.

[23] H. Tributsch, “Direct versus indirect bioleaching”, Hydrometallurgy, vol. 59, pp. 177–185, 2001.

[24] A. Schippers and W. Sand, “Bacterial leaching of metal sulfides proceeds by two indirect mechanism via thiosulfate or via polysufides and sulfur”, Applied and envi-ronmental Microbiology, vol. 65. n°1, pp. 319–321, 1999.

[25] A. Schippers, T. Rohwerder and W. Sand. “Intermediary sulfur compounds in pyrite oxidation: Implications for bioleaching and biodepyritization of coa”, Applied Micro-biology and Biotechnology, vol. 52, pp. 104-110, 1999.

[26] D. E. Rawlings, D. Dew and C. Plessis. “Biomineralization of metal-containing ores and concentrates”, TRENDS in Biotechnology, vol. 21, n°1, pp. 38–44, 2003.

[27] D. E. Rawlings, N. J. Coram, N. M. Gardner and S. M. Deane, “Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous-flow biooxidation tanks used to treat a variety of metal-containing arose and concentrates”, in: D. E. Rawlings. Review. Characteristics and adaptability of iron – and sulfur – oxidizing mi-croorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 2005.

[28] T. Das, S. Ayyappan, G. R. Chaudhury. “Factors affecting bioleaching kinetics of sul-fide ores using acidophilic micro-organisms”, BioMetals, 12, pp. 1-10, 1999.

[29] Harvey P.I. & Crundwell F.K., “The effect of As (III) on the growth of thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials. Minerals”, En-gineering, vol. 9, no. 10. pp. 1059-1068, 1996.

[30] J. M. Gómez, D. Cantero, “Biooxidación del ión ferroso”. In: Fernando Acevedo y Juan Carlos Gentina (Editores), Fundamentos y Perspectivas de las Tecnologías Biomi-neras, pp. 25-43, 2005.

[31] M. Ossa. “Biolixiviación de sulfuros (pirita-arsenopirita) utilizando cepas nativas de acidófilos como pretratamiento, para el beneficio de metales preciosos, mina El Zan-cudo, Titiribí, Antioquia”. Universidad Nacional de Colombia, Facultad de Ciencias, 2004.

[32] J. Daoud, D. Karamanev. “Formation of jarosite during Fe2+ oxidation by Acidithio-bacillus ferrooxidans”, Minerals Engineering, 19, pp. 960-967, 2006.

[33] F. Acevedo, J. C. Gentina, “Biolixiviación de minerales de cobre2. In: Fernando Ace-vedo y Juan Carlos Gentina (Editores). Fundamentos y Perspectivas de las Tecnolo-gías Biomineras, pp. 25-43, 2005.

[34] P. Valencia, F. Acevedo, “Are bioleaching rates determined by the available particle surface area concentration”, World J., Microbiol Biotechnol, n° 25, pp. 101–106, 2008.


[35] A. E. Torma, C. C. Walden, D. W. Duncan, R. M. R. Brannion. “The effect of carbon dioxide and particle surface on the microbiological leaching of a zinc sulfide concen-trate”, Biotechnol Bioeng, n° 14, pp. 777–786, 1972.
[36] M. Nemati, S. T. L. Harrison, “A comparative study on thermophilic and mesophilic biooxidation of ferrous iron”, Minerals Engineering, vol. 13, pp. 19–24, 1999.

[37] M. Nemati, J. Lowenadler, S. T. L. Harrison, S.T.L. “Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC)”, Appl Microbiol. Appl Microbiol Biotechnol, n°53, pp. 173–179, 2000.

[38] H. Deveci, “Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors”, Hydrometallurgy, n° 71, pp. 385–396, 2004.

[39] F. Acevedo, J. C. Gentina, P. Valencia, P., “Optimization of pulp density and parti-cle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus”, World J. Microbiol Biotechnol, n° 20, pp. 865–869, 2004.

[40] I. Suzuki, “Microbial laching of metals from sulfide minerals”, Biotechnology Advan-ces, n° 19, pp. 119-132, 2001.

[41] C. Klauber, “A critical review of the surface chemistry of acidic ferric sulphate disso-lution of chalcopyrite with regards to hindered dissolution”, Int. J. Miner. Process, n° 86, pp. 1–17, 2008.

[42] P. R. Holmes, F.K. Crundwell, “Kinetic aspects of galvanic interactions between mi-nerals during dissolution”, Hydrometallurgy, n° 39, pp, 353-375, 1995.

[43] E. Da Silva, “Review: Biotechnology: developing countries and globalization”, World Journal of Microbiology and Biotechnology, vol 14, pp. 463–486, 1998.

[44] G. Urbano, A. M. Meléndez, V. E. Reyes, M. A. Veloz, I. González, “Galvanic inte-ractions between galena – sphalerite and their reactivity”. International Journal of Mineral Processing, vol. 82, pp. 148–155, 2007.

[45] P. K. Abraitis, R.A.D. Pattrick, G. H. Kelsall, D.J. Vaughan, “Acid leaching and disso-lution of major sulphide ore minerals: processes and galvanic effects in complex systems”, Mineralogical Magazine, n° 68, vol. 2, pp. 343–351, 2004.

[46] R. Cruz, R. M. Luna-Sánchez, G.T. Lapidus, I. González, M. Monroy, M., “An experi-mental strategy to determine galvanic interactions affecting the reactivity of sulfide mineral concentrates”, Hydrometallurgy, n° 78, pp. 198– 208, 2005.

[50] D. P. Kelly and A.P Wood, “Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov,”, Int. J. Syst. Evol. Microbiol, 2000.

[51] G. Rossi (Eds)., “Biohydrometallurgy”, McGraw-Hill Book Company GmbH, Ham-burg, 1990.
Publicado
2014-12-30
Cómo citar
Mejía, E., Osorno, L., & Ospina, J. (2014). Microorganismos Hierro–Azufre Oxidantes Una Alternativa Biotecnológica. Revista CINTEX, 19, 63-77. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/40
Sección
ARTÍCULOS / ARTICLES