Modelo Mesoscópico de una Membrana de Intercambio Protónico

Palabras clave: Electroquímica, Física Computacional, Dinámica Browniana, Celdas de Combustible

Resumen

Se presenta un modelo mesoscópico hibrido continuo discreto, para una membrana de intercambio protónico para una celda de combustible, donde se emplean condiciones de frontera en la dirección  similares a las que estaria sometida una membrana si estuviera en una celda en operación, en las direcciones  y  se consideran condiciones periódicas. Debido a las características hibridas continuo-discreto del modelo permite realizar una representación completa de la electrostática del sistema, además de incluir la morfología estructural de las cadenas poliméricas que genera regiones de dominios iónicos percolados.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Juan David Torrenegra, Universidad Nacional de Colombia

Universidad Nacional de Colombia sede Medellin / Facultad de Minas

Juan Pablo Hernandez-Ortiz, Universidad Nacional de Colombia

Juan P. Hernández‐Ortiz currently works at the Departamento de Materiales y Nanotecnología at the Universidad Nacional de Colombia-Medellin. Juan does research in Physical Chemistry, Chemical Thermodynamics and Materials Chemistry. His research is centered around the concept of materials design with special focus on functional materials, directed assembly and genome analysis. Juan is the director of the Colombia/Wisconsin One-Health Consortium at the Universidad Nacional de Colombia-Medellin. This consortium is dedicated to the study of arboviruses and tropical pathologies towards the design of vaccines, treatments and early diagnostic devices in human and animal health. It is funded by Ruta N, the University of Wisconsin-Madison and the Universidad Nacional de Colombia.

Citas

[1] A. Savelyev and G. A. Papoian, “Molecular renormalization group coarse-graining of polymer chains: Application to doublestranded DNA", Biophysical Journal, vol. 96, pp. 4044-4052, 2009.
[2] D. Cheddie and N. Munroe, “Review and comparison of approaches to proton exchange membrane fuel cell modeling", Journal of Power Sources, vol147, pp. 72-84 (2005).
[3] T. Boudou, T. Crouzier, K. Ren, G. Blin, and C. Picart, “Multiple functionalities of polyelectrolyte multilayer lms: New biomedical applications", Advanced Materials, vol. 22, pp. 441-467, 2010.
[4] L. K. Sanders, W. Xian, C. Gu_aqueta, M. J. Strohman, C. R. Vrasich, E. Luijten, and G. C. L. Wong, “Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media", Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 15994-9 2007.
[5] M. J. Stephen, “Spectrum of Light Scattered from Charged Macromolecules in Solution", The Journal of Chemical Physics, vol. 55, pp. 3878, 1971.
[6] J. Palacio, M. Fulla, I. Rivera. “Modelo Físico-Matemático para la Estimación del Tamaño de Partículas en Suspensiones Coloidales de Baja Dilución”. Revista CINTEX, [S.l.], v. 20, n. 1, p. 53-68, june 2015. ISSN 2422-2208.
[7] V. Isaza and J. Izquierdo, "Estudio experimental de las propiedades morfológicas del compuesto NaNbO3", Revista CINTEX, vol. 21, no. 1, pp. 9–13, 2016.
[8] E. Mejía, L. Osorno, and J. Ospina, “Microorganismos Hierro–Azufre Oxidantes Una Alternativa Biotecnológica,” Rev. CINTEX, vol. 19, pp. 63–77, 2014.
[9] F. Hoyos Gómez, J. Betancur Gómez, D. Osorio Patiño, and J. G. Ardila Marín, “Construcción de curvas de factor de concentración de esfuerzos por medio de simulaciones,” Rev. CINTEX, vol. 21, no. 1, pp. 35–43, 2016.
[10] J. Z. Wu, D. Bratko, H. W. Blanch, and J. M. Prausnitz, “Interaction between oppositely charged micelles or globular proteins”, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 62, pp. 5273-5280, 2000.
[11] M. Trulsson, B. J Onsson, T. Akesson, J. Forsman, and C. Labbez, “Repulsion between oppositely charged surfaces in multivalent electrolytes", Physical Review Letters, vol 97, pp. 1-4, 2006.
[12] A. A. Meier-Koll, C. C. Fleck, and H. H. von Grounberg, “The counterion-release interaction", Journal of Physics: Condensed Matter, vol. 16, pp. 6041-6052, 2004.
[13] S. A. Safran, “Scaling relations for counterion release and attraction of oppositely charged surfaces", Europhysics Letters, vol. 69, pp. 826-831, 2005.
[14] D. Ben-Yaakov, Y. Burak, D. Andelman, and S. A. Safran, “Electrostatic interactions of asymmetrically charged membranes", vol 79, pp. 0295-5075, 2007.
[15] H. S. Antila, P. R. Van Tassel, and M. Sammalkorpi, “Interaction modes between asymmetrically and oppositely charged rods", Physical Review E, vol. 93, pp. 1-6, 2016.
[16] T. Harit and F. Malek, “Elaboration of new thin solid membrane bearing a tetrapyrazolic macrocycle for the selective transport of lithium cation", Separation and Purification Technology, vol.188, pp. 394-398, 2017.
[17] D. Zioui, O. Arous, N. Mameri, H. Kerdjoudj, M. S. Sebastian, J. Vilas, J. Nunes-Pereira, and S. Lanceros-Mndez, “Membranes based on polymer miscibility for selective transport and separation of metallic ions", Journal of Hazardous Materials, vol. 336, pp. 188-194, 2017.
[18] D. Wang, J. Hu, D. Liu, Q. Chen, and J. Li, “Selective transport and simultaneous separation of cu(ii), zn(ii) and mg(ii) using a dual polymer inclusion membrane system" Journal of Membrane
Science, vol. 524, pp. 205-213, 2017.
[19] X.-M. Zhang, Z.-H. Tu, H. Li, L. Li, Y.-T. Wu, and X.-B. Hu, “Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of co2", Journal of
Membrane Science, vol. 527, pp. 60-67, 2017.
[20] K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, “Transport in proton conductors for fuel cell applications: simulation, elementary reactions and phenomenology", Chemical Reviews, vol. 104, pp. 4637-4678, 2004.
[21] X. Li, S. De Feyter, D. Chen, S. Aldea, P. Vandezande, F. D. Prez, and I. F. J. Vankelecom, “Solvent-resistant nanofitration membranes based on multilayered polyelectrolyte complexes", Chemistry of Materials, vol. 20, pp. 3876-3883, 2008.
[22] K. D. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", Journal of Membrane Science, vol.185, pp. 29-39, 2001.
[23] P. Pei, Y. Li, H. Xu, and Z. Wu, \A review on water fault diagnosis of PEMFC associated with the pressure drop", Applied Energy, vol. 173, pp. 366-385, 2016.
[4] R. Sousa and E. R. Gonzalez, “Mathematical modeling of polymer electrolyte fuel cells", Journal of Power Sources vol. 147, pp. 3245, 2005.
[25] E. O. Johansson, T. Yamada, B. Sund_en, and J. Yuan, “Dissipative particle dynamics approach for nano-scale membrane structure reconstruction and water difusion coeficient estimation”, International Journal of Hydrogen Energy, vol. 40, pp. 1800-1808, 2015.
[26] W. Goddard, B. Merinov, A. Van Duin, T. Jacob, M. Blanco, V. Molinero, S. S. Jang, and Y. H. Jang, “Multi-paradigm multiscale simulations for fuel cell catalysts and membranes", Molecular Simulation, vol. 32, pp. 251-268, 2006.
[27] E. Spohr, “Monte Carlo simulations of a simple lattice model of polymer electrolyte membranes", Journal of Molecular Liquids, Vol. 136, pp. 288-293, 2007.
[28] A.-T. Kuo, W. Shinoda, and S. Okazaki, “Molecular Dynamics Study of the Morphology of Hydrated Peruorosulfonic Acid Polymer Membranes", The Journal of Physical Chemistry C, vol.120, pp. 25832-25842, 2016.
[29] J. T. Wescott, Y. Qi, L. Subramanian, and T. Weston Capehart, “Mesoscale simulation of morphology in hydrated peruorosulfonic acid membranes", Journal of Chemical Physics, vol. 124, pp. 1-14, 2006.
[30] D. Allen M. & Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1987.
[31] Kirby, Brian. Micro- and nanoscale fluid mechanics: transport in microfluidic devices. New York: Cambridge University Press, 2010. Print.
[32] T. Cosgrove, Colloid Science: Principles, Methods and Applications, 2009 pp. 1-288.
[33] H. C. Ottinger, Beyond Equilibrium Thermodynamics, Wiley-Interscience, 2005.
[34] H. Risken and T. Frank, The Fokker-Planck Equation: Methods of Solutions and Applications, Springer Series in Synergetics, Springer, 1996.
[35] F. Paper, M. Tripathy, A. P. Deshpande, and P. B. S. Kumar, “How Much Can We Coarse-Grain while Retaining the Chemical Speciticity: A Study of Sulfonated Poly(ether ether ketone)", pp. 155-169, 2016.
[36] P. V. Komarov, I. N. Veselov, P. P. Chu, and P. G. Khalatur, “Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly (ether ether ketone) and Nafion", Soft Matter, vol. 6, pp. 3939, 2010.
[37] C. C. Hsieh, S. Jain, and R. G. Larson, “Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models", The Journal of chemical physics, vol. 124, pp. 044911, 2006.
[38] D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2008.
[39] J. P. Hernández-Ortiz, J. J. De Pablo, and M. D. Graham, “Fast computation of many-particle hydrodynamic and electrostatic interactions in a con_ned geometry", Physical Review Letters vol. 98, pp. 1-4, 2007.
[40] J. P. Hernández-Ortiz, H. Ma, J. J. De Pablo, and M. D. Graham, “Concentration distributions during folw of confined flowing polymer solutions at finite concentration: slit and grooved channel", Korea-Australia Rheology Journal, vol. 20, pp. 143-152, 2008.
[41] J. P. Hernández-Ortiz, M. Chopra, S. Geier, and J. J. De Pablo, “Hydrodynamic efects on the translocation rate of a polymer through a pore", Journal of Chemical Physics, vol. 131, pp. 1-8, 2009.
Publicado
2018-12-31
Cómo citar
Torrenegra, J. D., Hernandez-Ortiz, J. P., & Molina, J. (2018). Modelo Mesoscópico de una Membrana de Intercambio Protónico. Revista CINTEX, 23(2), 76-85. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/320
Sección
ARTÍCULOS DE INVESTIGACIÓN / RESEARCH PAPERS