Tratamiento de aguas residuales textiles a partir de métodos biológicos

  • G. D. Jojoa-Unigarro Ingeniero Universidad Nacional de Colombia, sede Medellín
  • H. L. Rodriguez-Zambrano Ingeniero Universidad Nacional de Colombia, sede Medellín
  • S. A. Cardona-Gallo PhD. Universidad Nacional de Colombia, sede Medellín
Palabras clave: textil, remoción de color, depuración agua, métodos


Este artículo evalúa el tren de tratamiento más adecuado para la remoción de colorantes de las aguas residuales de origen textil. Para ello se analizaron diferentes tecnologías como reactores de lecho empacado, de lecho fluidizado, rayos UV, sistema aerobios y anaerobios. Para poder determinar las ventajas y desventajas de cada tecnología, y poder establecer el esquema conceptual de tren de tratamiento.


La descarga de datos todavía no está disponible.


[1] A. B. d. Santos, F. J. Cervantes y J. B. v. Lier, “Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology» Bioresource Technology, pp. 2369-2385, 2007.

[2] R. Saratale, G. Saratale, J. Chang y S. Govindwar, “Bacterial decolorization and degradation of azo dyes: A review” Journal of the Taiwan Institute of Chemical Engineers, p. 138–157, 2011.

[3] T.-H. Kim, Y. Lee, J. Yang, B. Lee, C. Par y S. Kim, “Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi” Desalination, pp. 287-293, 2004.

[4] I. K. Kapdan y R. Oztekin, “The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic–aerobic SBR system» Journal of Hazardous Material, pp. 896-901, 2006.

[5] F. P. Van der Zeea y S. Villaverde, “Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies” review of bioreactor studies, pp. 1425-1440, 2005.

[6] S.-J. You, D.-H. Tseng y J.-Y. Deng, “Using combined membrane processes for textile dyeing wastewater reclamation” Desalination, p. 426–432, 2008.

[7] B. K. Körbahti y A. Tanyolac, “Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor” Journal of Hazardous Materials, pp. 771-778, 2009.

[8] J. García Montaño, F. Torrades, J. A. García Hortal, x. Doménech y J. Peral, “Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal” Applied Catalysis B: Environmental, pp. 86-92, 2006.

[9] T. H. Kim, C. Park, J. Lee, E.-B. Shin y S. Kim, “Pilot scale treatment of textile was-tewater by combined process (fluidized biofilm process–chemical coagulation–electrochemical oxidation)” Water Research, pp. 3976-3988, 2002.

[10] S. H. Lin y C. F. Peng, “Continuous treatment of textile wastewater by combined coagulation, electrochemical, oxidation and activated sludge” Water Reseach, pp. 587-592, 1996.

[11] F. I. Hai, K. Yamamoto, F. Nakajima y K. Fukushi, “Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment” Water Research, pp. 2199-2206, 2011.

[12] S.-A. Ong, L.-N. Ho, Y.-S. Wong y K. Raman, “Performance and Kinetic Study on Bioremediation of Diazo Dye (Reactive Black 5) in Wastewater Using Spent GAC–Biofilm Sequencing Batch Reactor» Water Air Soil Pollut, pp. 1615-1623, 2012.

[13] W. S. Chang, S.-W. Hong y J. Park, “Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter» Process Biochemistry, pp. 693-698, 2002.

[14] E. Ellouze, N. Tahri y R. B. Amar, “Enhancement of textile wastewater treatment process using Nanofiltration» Desalination, pp. 16-23, 2012.

[15] M. Liu, Z. Lü, Z. Chen, S. Yu y C. Gao, “Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse” Desalination, pp. 372-378, 2011.

[16] x . Wang, J. Li, x. LI y G. Du, “Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater” Sci. Engin. China , pp. 615-622, 2011.

[17] C. Pearcea, J. Lloydb y J. Guthriea, “The removal of colour from textile wastewater using whole bacterial cells: a review” Dyes and Pigments, pp. 179-196, 2003.

[18] B. Manu y S. Chaudhari, “Anaerobic decolorisation of simulated textile wastewater containing azo dyes” Bioresource Technology, pp. 225-231, 2002.

[19] O. Türgay, G. Ersöz, S. Atalaya, J. Forss y U. Welander, “The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation” Separation and Purification Technology, pp. 26-31, 2011.

[20] I. M. Banat, P. Nigam, D. Singh y R. Marchant, “Microbial decolorization of texti-le-dye-containing effluents: A review” Bioresource Technology, pp. 217-227, 1996.

[21] G. S. Colotta, “Tratamiento físico químico de aguas residuales de la industria textil.” Revista de Ingeniería Química, p. 73 – 80, 2003.

[22] T. Robinson, G. McMullan, R. Marchant y P. Nigam, “Remediation of dyes in textile e‚uent: a critical review on current treatment technologies with a proposed alterna-tive” Bioresource Technology, pp. 247-255, 2001.

[23] Z. Fu, Y. Zhang y x. Wang, “Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter” Bioresource Technology, pp. 3748-3753, 2011.

[24] M. Albuquerquea, A. Lopes, M. Serralheiro, J. Novaisa y H. Pinheiro, “Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic–aerobic sequencing batch reactors” Enzyme and Microbial Technology, pp. 790-799, 2005.

[25] D. Cui, G. Li, D. Zhao, x. Gu, C. Wang y M. Zhao, “Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions” Hazardous Materials, pp. 185-192, 2012.

[26] M. Isıka y D. T. Sponza, “Anaerobic/aerobic treatment of a simulated textile was-tewater” Separation and Purification Technology, pp. 64-72, 2008.

[27] C. O’neill, F. R. Hawkes, D. L. Hawkes y S. Esteves, “Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye” Water Research, pp. 2355-2361, 2000.

[28] S. Sandhya, S. Padmavathy, K. Swaminathan, Y. Subrahmanyam y S. Kaul, “Microaerophilic–aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater” Process Biochemistry, pp. 885-890, 2005.

[29] A. Baban, A. Yediler, G. Avaz y S. Hostede, “Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors” Bioresource Technology, pp. 1147-1152, 2010.

[30] B. Bonakdarpou, I. Vyrides y D. C. Stuckey, “Comparison of the performance of one stage and two stage sequential anaerobiceaerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters” International Bio-deterioration & Biodegradation, pp. 591-599, 2011.

[31] M. Brik, P. Schoeberl, B. Chamam, R. Braun y W. Funchs, “Advanced trearment of textile wastewater towards reuse using a membrane bioreactor” Process Bioche-mistry, p. 1751–1757, 2006.

[32] O. Ozdemir, M. Turan, A. Z. Turan, A. Faki y A. B. Engin, “Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ)” Journal of Hazardous Materials, pp. 647-654, 2009.

[33] S. Sandhya, K. Sarayu y K. Swaminathan, “Determination of kinetic constants of hybrid textile wastewater treatment system” Bioresource Technology, pp. 5793-5797, 2008.

[34] M. Senthilkumar, G. Gnanapragasam, V. Arutchelvana y S. Nagarajan, “Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate” Chemical Engineering Journal, pp. 10-14, 2011.

[35] I. K. Kapdan, M. Tekol y F. Sengul, “Decolorization of simulated textile wastewater in an anaerobic-aerobic sequential treatment system” Process Biochemistry, pp. 1031-1037, 2003.

[36] P. I. M. Firmino, M. E. R. d. Silva, F. J. Cervantes y A. B. d. Santos, “Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems” Bioresource Technology, p. 7773–7779, 2010.

[37] B. Manu y S. Chaudhari, “Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time” Process Biochemistry, pp. 1213-1221, 2003.

[38] M. Jonstrup, N. Kumar, M. Murto y B. Mattiasson, “Sequential anaerobic–aerobic treatment of azo dyes: Decolourisation and amine degradability” Desalination, p. 339–346, 2011.

[39] Y. Li y D. L. xi, “Decolorization and Biodegradation of Dye Wastewaters by a Facultative-aerobic Process».

[40] M. Isik, “Efficiency of simulated textile wastewater decolorization process based on the methanogenic activity of upflow anaerobic sludge blanket reactor in salt inhibi-tion condition” Enzyme and Microbial Technology, pp. 399-404, 2004.

[41] M. Isıka y D. T. Sponza, “Biological treatment of acid dyeing wastewater using a sequential anaerobic/aerobic reactor system” Enzyme and Microbial Technology, p. 887–892, 2006.

[42] Y. K. Oh, Y. J. Kim, Y. Ahn, S. K. Song y S. Park, “Color removal of real textile wastewater by sequential anaerobic and aerobic reactors” Biotechnologyand Bioprocess engineering, pp. 419-422, 2004.

[43] D. Sponza y M. I ̧sik, “Decolorization and azo dye degradation by anaerobic/aerobic sequential process” Enzyme and Microbial Technology, pp. 201-110, 2002.

[44] S. A. Ong, E. Toorisaka, M. Hirata y T. Hano, “Decolorization of azo dye (Orange II) in a sequential UASB–SBR system” Separation and Purification Technology, p. 297–302, 2005.

[45] F. Liu, C. C. Zhao, D. F. Zhaoa y G. H. Liu, “Tertiary treatment of textile wastewa-ter with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations” Journal of Hazardous Materials, pp. 161-167, 2008.

[46] E. Khelifi, H. Gannoun, Y. Touhami, H. Bouallagui y M. Hamdi, “Aerobic decolouri-zation of the indigo dye-containing textile wastewater using continuous combined bioreactors” Journal of Hazardous Materials, pp. 683-689, 2008.

[47] I. Peternel, N. Koprivanac y H. Kusic, “UV-based processes for reactive azo dye mineralization” Water research, vol. 40, nº 525 – 532, 2006.

[48] F. Beltran, “Ozone–UV radiation–hydrogen peroxide oxida-tion technologies” New York, USA., Chemical Degradation Methods for Wastes and Pollutants., 2003.

[49] M. Muruganandham y M. Swaminathan, “Photochemical oxidation of reactive azo dye with UV–H2O2 process” vol. 62, nº 269–275, 2004.

[50] H. Y. Shu y M. C. Chang, “Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2processes” vol. 65, nº 25-31, 2005.

[51] H. Tomiyasu, H. Fukutomi y G. Gordon, “Kinetics and mechanism of ozone decomposition in basic aqueous solution” vol. 24, nº 19, 1985.

[52] I. Peternel, H. Kusic, N. Koprivanac y B. Locke, “Direct ozone and electrical discharge reactors for reactive dye degradation».

[53] C. Galindo, P. Jacques y P. Jacques, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2and VIS/TiO2 Comparative mechanistic and kinetic investigations” vol. 130 , nº 35–47, 2000.

[54] I. T. Peternel, N. Koprivanac, A. M. L. Bozic y H. M. Kusic, “Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution” vol. 148, nº 477–484, 2007.

[55] M. R. Torres y M. C. Gutiérrez, “Colour removal of three reactive dyes by UV light exposure afterelectrochemical treatment” vol. 156, nº 114–120, 2010.
Cómo citar
Jojoa-Unigarro, G. D., Rodriguez-Zambrano, H. L., & Cardona-Gallo, S. A. (2015). Tratamiento de aguas residuales textiles a partir de métodos biológicos. Revista CINTEX, 20(1), 11-34. Recuperado a partir de