Revisión, observaciones y consideraciones sobre la erosión a alta temperatura en PS TBC para inspección técnica en turbinas a gas

Autores/as

  • Augusto César Barrios Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • Gabriel Jaime Ovalle Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • José David Acosta Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • Andrés Felipe Sánchez Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • David Alejandro Marulanda Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • Óscar Alejandro Arroyave Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • Freddy Jiménez Navas Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín
  • Carlos Mario Serna Grupo de Tribología y Superficies, Universidad Nacional de Colombia sede Medellín

Palabras clave:

Barreras Térmicas, erosión, álabe de turbina, inspección en turbinas, TGO, delaminación, TMF, CTE, coeficiente de expansión térmica

Resumen

La erosión es considerada como la segunda causa de falla en turbinas de generación y es un factor que limita el tiempo en operación de sus componentes. En el mantenimiento preventivo de estos equipos existen técnicas clásicas para determinar fallas en campo. Estas son: Inspección con boroscopio, con corrientes de Eddy y radiografías. Sin embargo, el reto consiste en correlacionar las microestructuras erosionadas de las barreras térmicas TBC con los modos de falla en los álabes de primera etapa y las cámaras de combustión. Este trabajo trata de aproximarse a los estudios científicos en erosión para tener criterios de evaluación en las inspecciones técnicas y en la predicción de la vida útil de los componentes. La primera parte consta de la caracterización de las superficies erosionadas del liner o combustor y los álabes de primera etapa obtenidos de una turbina GE7FA usada por EPM en la generación de energía. La segunda parte cubre la relación entre los hallazgos en la caracterización y la literatura, y reportes técnicos 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

[1] D. R Clarke, and C. G. Levi. “Materials design for the next generation thermal barrier coatings”. Annual Review of Materials Research 33.1, 383-417. 2003.

[2] J. R. Nicholls, M. J. Deakin and D. S. Rickerby. “A comparison between the erosion behavior of thermal spray and electron beam physical vapor deposition thermal ba-rrier coatings”. Wear 233–235; 1999.

[3] S. M. Meier, D. K. Gupta. “The evolution of thermal barrier coatings in gas turbines engine applications”. Journal of Engineering for Gas Turbines and Power 116, 1994.

[4] R. G. Wellman, J. R. Nicholls and K. Murphy. “Effect of microstructure and tempe-rature on the erosion rates and mechanisms of modified EB PVD TBCs”, Wear 267; 2009.

[5] N. P. Padture, M. Gell and E. H. Jordan. “Thermal Barrier Coatings for Gas-Turbine Engine Applications”. Review: Materials Science, Science’s Compass Vol. 296, 280; 2002.

[6] D. Balevic, S. Hartman and R. Youmans. “Heavy-Duty Gas Turbine Operating and Maintenance Considerations”. GE Energy, GER-3620L.1, 2010.

[7] D. G. Robertson, C. Zhou. “Power, Petrochemical/ Refining and Process Plant: Sur-vey of Advanced Inspection Techniques & Recommendations for Best Practices”. European Technology Development Limited, ETD Report No: 1077-gsp-72; 2008.

[8] Technical Data, Brouchure, GE Sensing & Inspection Technologies, “Productivity through inspection solutions Inspection Technologies”; 2009.

[9] Brouchure GE Sensing & Inspection Technologies; “Corrosion & Erosion: Inspection solutions for detection, sizing & monitoring”; 2010.

[10] E. Tzimas et al. “Damage and Failure Mechanisms of Thermal Barrier Coatings under Thermomechanical Fatigue Loadings”. Thermomechanical Fatigue Behavior of Ma-terials: 4th Volume, ASTM STP 1428, 2003.

[11] V. K. Tolpygo, D. R. Clarke. “Rumpling induced by thermal cycling of an overlay coa-ting: the effect of coating thickness”. Acta Materalia, 2003.

[12] R. G. Wellman, J. R. Nicholls. “High temperature erosion–oxidation mechanisms, maps and models”; Wear 256, 2004.

[13] A. Hamed and W. Tabakoff. “Erosion and deposition in Turbomachinery”. Journal of Propulsion and Power”, Vol. 22, No. 2, March–April 2006.

[14] W. Tabakoff, A. Hamed and V. Shanov. “Blade deterioration in a gas turbine engine”. International Journal of Rotating Machinery, 1998.

[15] I. Finnie. “Erosion of surfaces by solid particles”; wear 3, 1960.

[16] J. G. A. Bitter. “A study of erosion phenomena part I, part II”, Wear 6, 1962.

[17] G. Grant, W. Tabakoff. “An experimental investigation of the erosive characteristics of 2024 aluminum alloy”. National technical Information Services, U.S. Army Re-search Office-Durham, 1973.

[18] B. R. Lawn; F.C. Frank, F. R. S. “On the theory of Hertzian fracture”. Ed. Proceedings of the Royal Society, 1967.

[19] B. R. Lawn, M. V. Swain, “Microfracture beneath point indentations in brittle solids”. Journal of Material Science, 1975.

[20] B. R. Lawn, Equilibrium penny like cracks in indentation fracture, 1975.

[21] B. R. Lawn, A. G. Evans and D. B. Marshall. “Elastoplastic damage in ceramics: The median/radial crack system”. The American Ceramic Society, 1980.

[22] A. G. Evans, T. R. Wilshaw. “Quasistatic solid particle damage in brittle solids I. Ob-servations, analysis and Implications”, Acta Metallurgica 24.10, 939-956, 1976.

[23] R. W., Rice, B. K., Speronello. “Effect of microstructure on rate of machining of cera-mics”. American ceramic Society, 1976.

[24] J. E., Ritter, et al. “Erosion Damage in Glass and Alumina”. The American Ceramic Society, 1984.

[25] E. Ritter. “Erosion damage in structural ceramics”. Materials Science and Enginee-ring, Vol. 71, 1985.

[26] J. E. Ritter, L. Rosenfeld and K. Jakus. “Erosion and strength degradation in alumi-na”. Wear, vol.111; 1986.

[27] H. E., Eaton and R. C., Novak. “Particulate erosion of plasma sprayed porous cera-mic”. Surface and Coatings Technology, Vol. 30, 1987.

[28] A. Portinha. “Characterization of thermal barrier coating with a gradient in porosi-ty”, Surf. Coat. Tech, 2005.

[29] Handbook of Thermal Spray Technology. Handbook; ASM International; 2004.

[30] R. Mc Pherson. “A review of microstructure and properties of plasma sprayed cera-mic coatings”. Surface and Coatings Technology, 39-40; 1989.

[31] C. J. Li, G. J. Yang and A. Ohmori. “Relationship between particle erosion and lame-llar microstructure for plasma-sprayed alumina coatings”; Wear, 2006.

[32] A. G. Evans et al. “Mechanisms controlling the durability of thermal barrier coa-tings”; progress in materials Science; 2001.

[33] J. R. Nicholls, M. J. Deakin, D. S. Rickerby. “A comparison between the erosion beha-vior of PS and EBPVD TBC”. Wear, 1999.

[34] A. Rabiei, A. G. Evans. “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings”. Acta Materalia Vol. 48; 2000.

[35] C. S. Ramachandran, V. Balasubramanian and P. V. Ananthapadmanabhan. “Erosion of atmospheric plasma sprayed rare earth oxide coatings under air suspended co-rundum particles”. Ceramics International, 2013.

[36] Y. Wang et al. “Microstructure and indentation mechanical properties of plasma sprayed nano-bimodal and conventional ZrO2-8wt%Y2O3 thermal barrier coatings”; Vacuum Vol. 86; 2013.

[37] P. K. Wright, A. G. Evans, “Mechanisms governing the performance of thermal ba-rrier coatings”. Current Opinion in Solid State and Materials Science, Vol. 4; 1999.

[38] M. P. Boyce. Gas Turbine engineering handbook, Second Edition; Ed. 2002.

[39] A. Giampaolo. “Gas Turbine Handbook: Principles and Practice”. Ed. The Fairmont Press, Inc. 2009.

[40] M. Papa, R. J. Goldstein, F. Gori. “Numerical heat transfer predictions and mass/heat transfer measurements in a linear turbine cascade”. Applied Thermal Engineering; 2007.

[41] C. B. Meher Homji and G. Gabriles. “Gas turbine blade failures, causes, avoidance, and troubleshooting”; ATM, Proceeding of the 27th Turbomachinery Sympossium.

[42] Z. Mazur, A. Luna-Ramírez, J. A. Juárez-Islas, A. Campos-Amezcua. “Failure analysis of a gas turbine blade made of Inconel 738LC alloy”, Engineering Failure Analysis 2005

[43] R. C. Reed. The superalloys, fundamentals and applications. Cambrige press 2006. p. 324.

[44] B. Baufeld, M. Bartsch, S. Dalkilic, M. Heinzelmann. “Defect evolution in thermal barrier coating systems under multi-axial thermomechanical loading”. Surfaces and coatings technology; 2005.

[45] A. H. Atwater, W. Tabaco. “F Turbine Blade Surface Deterioration by Erosion”. ASME Journal of Turbomachinery, Vol. 127, 2005.

Descargas

Publicado

2013-12-30

Cómo citar

Barrios, A. C., Ovalle, G. J., Acosta, J. D., Sánchez, A. F., Marulanda, D. A., Arroyave, Óscar A., Jiménez Navas, F., & Serna, C. M. (2013). Revisión, observaciones y consideraciones sobre la erosión a alta temperatura en PS TBC para inspección técnica en turbinas a gas. Revista CINTEX, 18, 297–324. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/62

Número

Sección

ARTÍCULOS