Recubrimientos cerámicos de barrera térmica

Autores/as

  • Darío Zambrano Mera Grupo de Tribología y Superficies. Facultad de Minas Universidad Nacional de Colombia sede Medellín

Palabras clave:

Recubrimientos de barrera térmica, turbinas a gas, YSZ, desgaste, corrosión, alta temperatura

Resumen

El desarrollo de la tecnología de recubrimientos de barrera térmica es importante debido a las propiedades que posee, lo que incrementó la aplicabilidad y uso en diferentes disciplinas industriales. En la actualidad su utilidad más explorada y más estudiada es su aplicación en turbinas de gas, e industria aeroespacial, donde las condiciones de operación son severas, y en las cuales los materiales deben soportar condiciones a altas temperaturas, degradación por corrosión, esfuerzos térmicos y mecánicos. Los materiales utilizados ahora en los componentes de las turbinas de gas forman un sistema de una capa cerámica con una composición química de circonia estabilizada con itria y una capa de anclaje de MCrAlY. La función principal de los recubrimientos es aumentar la resistencia a la alta temperatura y disminuir la conductividad térmica exterior - sustrato. En el presente trabajo se aborda de manera general la historia, desarrollo y perspectivas de estos recubrimientos, dar a conocer los beneficios tecnológicos e innovación del estudio y mejoramiento de esos materiales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

[1] Meherwan P. Boyce. “Gas Turbine Engineering Handbook,” GPP, 2002.

[2] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit. “Mechanisms controlling the durability of thermal barrier coatings”. Progress in Materials Scien-ce, Vol. 46, pp. 505–553, 2001.

[3] Hyung-Jun Janga, Dong-Ho Parka, Yeon-Gil Junga, Jung-Chel Jangb, Sung-Churl Choib, and Ungyu Paikb. “Mechanical characterization and thermal behavior of HVOF-spra-yed bond coat in thermal barrier coatings (TBCs)”. Surfice and coatings technology, Vol. 200, pp. 4355 – 4362, 2006.

[4] C. Zhu, A. Javed, P. Li, F. Yang, G.Y. Liang, and P. Xiao. “A study of the microstructure and oxidation behavior of alumina/yttria-stabilized zirconia (Al2O3/YSZ) thermal ba-rrier coatings”. Surface & Coatings Technology, Vol. 212, pp. 214–222, 2012.

[5] M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail. “Thermal analysis of friction welding process in relation to the welding of YSZ-alumina composite and 6061 aluminum alloy”. Applied Surface Science, Vol. 258, pp. 8264– 8272, 2012.

[6] C.T. Sims. “Non-Metallic Materials for Gas Turbine Engines -- Are They Real?” Adv. Mater. Process, Vol. 139, pp. 32–39, 1991.

[7] H.G Scott. “Phase relationships in the zirconia-yttria system”. Journal of Materials Science, Vol. 10, pp. 1527–1535, 1975.

[8] [Jan Ilavsky and Judith K. Stalick. “Phase composition and its changes during annea-ling of plasma-sprayed YSZ”. Surface and Coatings Technology, Vol. 127, p. 120]129, 2000.

[9] Jianhua Yu, Huayu Zhao, Shunyan Tao, Xiaming Zhou, and Chuanxian Ding. “Thermal conductivity of plasma sprayed Sm2Zr2O7 coatings”. Journal of the European Cera-mic Society, Vol. 30, pp. 799–804, 2010.

[10] SONG Xiwen, XIE Min, ZHOU Fen, JIA Guixiao, HAO Xihong, and AN Shengli. “Hi-gh-temperature thermal properties of yttria fully stabilized zirconia ceramics”. JOURNAL OF RARE EARTHS, Vol. 29, p. 155, 2011.

[11] Robert A. Miller. “Thermal Barrier Coatings for Aircraft Engines. History and Direc-tions,” NASA Lewis Research Center.

[12] A. Rabiei and A. G. Evans. “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings”. Acta Mater, Vol. 48, p. 3963, 2000.

[13] K. Vaidyanathan, M. Gell, and E. H. Jordan. “Thermal cycling of EB-PVD/MCrAlY ther-mal barrier coatings: II. Evolution of photo-stimulated luminescence”. Vol. 28, pp. 133–134, 2000.

[14] Jiangfeng Zhanga, Xinghua Zhonga, Yongliang Chenga, Ying Wanga, Zhenhua Xua, Xiaolong Chena, Hongmei Maa, Yu Zhaoa, and Xueqiang Caoa. “Thermal-shock re-sistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magneto-plumbite structure”. Journal of Alloys and Compounds, Vol. 482, pp. 376–381, 2009.

[15] S. Stecura. “Two Layer Thermal Barrier Coating for High Temperature Components”. Amer. Ceram. Soc. Vol. 56, pp. 1082–1085, 1977.

[16] S. Stecura and G.H. Liebert. “Thermal Barrier Coating System”. 4,055,705 Oct-1977.

[17] S. Stecura. “Two-Layer Thermal Barrier Thermal Barrier Coating for Turbine Airfoils -- Furnace and Burner Rig Test Results”. NASA TM X-3425, 1976.

[18] C.H. Liebert. “Durability of Zirconia Thermal-Barrier Ceramic Coatings on Air-Cooled Turbine Blades in Cyclic Jet Engine Operation”. NASA TM X-3410, 1976.

[19] R. J. Bratton, S.K. Lau, and S.Y. Lee. “Evaluation of Present Thermal Barrier Coatings for Potential Service in Electric Utility Gas Turbines”. NASA CR-165545, 1982.

[20] J. T. DeMasi-Marcin, K.D. Sheffler, and S. Bose. Mechanisms, “Degradation and Fai-lure in a Plasma Deposited Thermal Barrier Coating”. ASME, Vol. 89-GT-132, 1989.

[21] S. R. Levine and R. A. Miller. “Thermal barrier coatings for utility gas turbines”. NASA TM-85349, 1982.

[22] R. C. Tucker, T.A. Taylor, and M.H. Weatherly. “Plasma Deposited NiCrAlY Airfoil and ZirconidNiCrAlY Thermal Barrier Coatings. Presented at the Third Conference on gas turbine materials in a Marine Environment”. Bath University, Bath, England, 1976.

[23] W. Beele, G. Marijnissen, and A. Van Lieshout. “The evolution of thermal barrier coa-tings”. Surface & Coatings Technology, Vol. 61, pp. 120–121, 1999.

[24] N.P. Padture, M. Gell, and E.H. Jordan. “Thermal barrier coatings for gas-turbine en-gine applications”. Science, Vol. 4, p. 280, 2002.

[25] X.Q. Cao, R. Vassen, and D. Stoever. “Ceramic materials for thermal barrier coa-tings”. J. Eur. Ceram. Soc. Vol. 1, p. 24.

[26] S. Secure. “Effects of Compositional Changes on the Performance of a Thermal Ba-rrier Coating System”. NASA TM-78976, 1978.

[27] F. C. Toriz, A.B. Thakker, and S.K. Gupta. “Thermal Barrier Coating for Jet Engines”. ASME 88-GT-279, 1988.

[28] “Plasma-Sprayed Zirconia Coatings”. Adv. Ceram, Vol. 12, pp. 488–502, 1984.

[29] E. C. Duderstadt and P. Agarwal. “Energy Efficient Engine, High Pressure Turbine Thermal Barrier Coating Support Technology”. NASA CR-168037, 1983.

[30] I. E. Summner and D. L. Ruckle. “Development of improved durability plasma spra-yed ceramic coatings for gas turbine engines”. AIAA, Vol. 80, p. 1193, 1980.

[31] P.A. Siemers and W.B. Hillig. “Thermal-Barrier-Coated Turbine Blade Study”. NASA CR- 165351, 1981.[31] N.P. Anderson and K.D. Sheffler. “Development of strain tolerant thermal barrier coating Systems”. NASA CR- 16825 1, 1983.

[32] T.A. Taylor, D.L. Appleby, A.E. Weatherill, and J. Griffiths. “Plasma-Sprayed Yttria. Stabilized Zirconia Coatings: Structure- Property Relationships”. Surf. Coatings Te-chnol, Vol. 44, pp. 470–480, 1990.

[33] E. C. Subbarao, A. H. Heuer, and L. W. Hobbs. “Science and Technology of Zirconia”. American Ceramic Society, Vol. 3, p. 1, 1984.

[34] R. L. Jones. Metallurgical and Ceramic Coatings. K. H. Stern. London: Chapman and Hall, 1996.

[35] H. E. Eaton, J. R. Linsey, and R. B. Dinwiddie. “The effect of thermal aging on the ther-mal conductivity of plasma sprayed fully stabilized zirconia”. Thermal Conductivity, Vol. 22, p. 289, 1994.

[36] M. Peters, K. Fritscher, G. Staniek, W. A. Kaysser, U., and Schultz. Materialwissen, Vol. 28, p. 357, 1997.

[37] SONG Xiwen, XIE Min, ZHOU Fen, JIA Guixiao, HAO Xihong, and AN Shengli. “Hi-gh-temperature thermal properties of yttria fully stabilized zirconia ceramics”. JOURNAL OF RARE EARTHS, Vol. 29, p. 155, 2011.

[38] Michael R. Winter and David R. Clarke. “Thermal conductivity of yttria-stabilized zir-conia–hafnia solid solutions”. Acta Materialia, Vol. 54, pp. 5051–5059, 2006.

[39] C. Degueldre, P. Tissot, H. Lartigue, and M. Pouchon. “Specific heat capacity and Debye temperature of zirconia and its solid solution”. Thermochimica Acta, Vol. 403, pp. 267–273, 2003.

[40] Qiu Guanming, Li Xikun,Qiu Tai, Zhao Haitao, Yu Honghao, and Ma Ruiting. “Appli-cation of Rare Earths in Advanced Ceramic Materials”. JOURNAL OF RARE EARTHS, Vol. 25, p. 281, 2007.

[41] ZHOU Hongming and YI Danqing. “Effect of rare earth doping on thermo-physical properties of lanthanumzirconate ceramic for thermal barrier coatings”. JOURNAL OF RARE EARTHS, Vol. 26, No. 6, p. 770, 2008.

[42] Zhenhua Xu, Limin He, Rende Mu, Shimei He, Guanghong Huang, and Xueqiang Cao. “Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zir-coniathermal barrier coatings”. Surface & Coatings Technology, Vol. 204, pp. 3652–3661, 2010.

[43] Y. Shen, M.D. Chambers, and D.R. Clarke. “Effects of dopants and excitation wave-length on the temperature sensingof Ln3+ doped 7YSZ”. Surface & Coatings Tech-nology, Vol. 203, pp. 456–460, 2008.

Descargas

Publicado

2013-12-30

Cómo citar

Zambrano Mera, D. (2013). Recubrimientos cerámicos de barrera térmica. Revista CINTEX, 18, 261–282. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/60

Número

Sección

ARTÍCULOS