Cementos Alcalinos: Materiales de Construcción Ecológicos

Autores/as

  • Nancy Montes Valencia Docente-investigadora. Grupo Qualipro- Facultad de Producción y Diseño. IU- Pascual Bravo. Ingeniera Química, MSc. Ciencias-Química

Palabras clave:

contaminación, medio ambiente, cemento Portland ordinario, cemento alcalino

Resumen

La preocupación actual es la mitigación y el control de las fuentes de contaminación ambiental provenientes de la actividad industrial, particularmente el sector de la construcción en lo que respecta a la obtención del cemento Portland ordinario (CPO), una de las grandes productoras de CO2. Por lo tanto, se constituye en un desafío la producción de un cemento alternativo o alcalino que sea menos contaminante con el medio ambiente. En este artículo se habla sobre la necesidad de la sostenibilidad de las ciudades, el proceso de obtención del CPO y del cemento alcalino, así como las condiciones para la producción de este último.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

[1] P. Bertier, R. Swennen, B. Laenen, D. Lagrou, R. Dreesen, ‘’Experimental identifica-tion of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE Belgium)’’, Journal of Geo-chemical Exploration, vol. 89, n° 1-3, pp. 10-14. 2012.

[2] R. Bruant, A. Guswa, M. Celia, C. Peters, ‘’Safe storage of CO2 in deep saline aqui-fers’’, Environmental science & technology, vol. 36, pp. 240a-245a., 2002.

[3] J. Deja, A. Uliasz-Bochenczyk, E.Mokrzycki, ‘’CO2 emissions from Polishcement in-dustry’’, International Journal of Greenhouse Gas Control, vol. 4, pp. 583–5888. 2010.

[4] F. Puertas, A. Barba, M. F. Gazulla, M. P. Gómez, M. Palacios, S. Martínez, ‘’Residuos cerámicos para su posible uso como materia prima en La fabricación de clínker de cemento portland: caracterización y activación alcalina’’, Materiales de Construcción, vol. 56, n° 281, pp. 73-84, 2006.

[5] J. Van Deventer, J. Provis, P. Duxson, ‘’Tecnhical and commercial progress in the adoption of geopolimer cement’’, Minerals Engineering, vol. 29, pp. 89-104, 2012.

[6]E.Vasconcelos, S. Fernández, J. L. Barroso de Aguiara, F. Pacheco-Torgal. ‘’Concrete retrofitting using metakaolingeopolymer mortars and CFRP’’, Construction Building Materials, vol. 25, pp. 3213–3221, 2011.

[7] N. Madlool, R. Saidur, M. Hossain, N. Rahim. “A critical review on energy use and savings in the cement industries”, Renewable & Sustainable Energy Reviews, vol. 15, pp. 2042–60, 2011.

[8] U.S. Geological Survey. Mineral commodity summaries. Disponible en: http://mine-rals.usgs. gov/minerals/pubs/mcs/2013/mcs2013.pdf.

[9] F. Pacheco, J. Castro, S. Jalali. ‘’Alkali-activated binders: A review, Part 1. Historical background, terminology, reaction mechanisms and hydration products’’. Construc-tion and Building Materials, vol. 22 pp.1305–1314, 2008.

[10] O. E. Gjorv, ‘’Steel corrosion in concrete structures exposed to Norwegian marine en-vironment’’, ACI Concrete International, 1994.

[11] C. Shi , A. Fernández, A. Palomo, ‘’ New cements for the 21st century: The pursuit of an alternative to Portland cement’’, Cement and Concrete Research, vol. 41, pp. 750-763, 2011.

[12] M. S. Imbabi, C. Carrigan, S. McKenna. ‘’Trends and developments in green cement and concrete technology’’, International Journal of Sustainable Built Environment, vol. 1, pp.194–216, 2012.

[13] S. Donatello, C. Kuenzel, A. Palomo, A. Fernández,’’ High temperature resistance of a very high volume fly ash cement paste’’, Resources, Conservation and Recycling, vol. 73, pp. 53– 63, 2013.

[14] M.C Nasvi, P.G. Ranjith, J. Sanjayan, ‘’The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells’’, Applied Ener-gy, vol. 102, pp. 1391–1398, 2013.

[15] P.V. Krivenko, Alkaline cements, in: P.V. Krivenko (Ed.), ‘’Proceedings of the First In-ternational Conference on Alkaline Cements and Concretes’’, VIPOL Stock Company, Kiev, Ukraine, pp. 11–129, 1994.

[16] H. Xu, J.L. Provis, J.S.J. Van Deventer, P.V. Krivenko, ‘’Characterization of aged slag Concretes’’, ACI Materials Journal, vol. 105, pp. 131–139, 2008.

[17] J. S. J. VAn Deventer, J. L. Provis, P. Duxson, D.G. Brice, ‘’Chemical research and climate change as drivers in the commercial adoption of alkali activated materials’’, Waste Biomass Valoriz, vol. 1, n°1, pp. 145–155, 2010.

[18] J. Davidovits. ‘’30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs’’, Conference Geopolymer, October 28-29, Mel-bourne, Australia, pp.1-16, 2002.

[19] M. Schneider, M. Romer, M. Tschudin, H. Bolio,‘’ Sustainable cement production-pre-sent and future’’, Cement and Concrete Research, vol. 41, pp. 642-650, 2011.

[20] J. L. Provis, C. Yong, P. Duxson, J. Deventer, ‘’ Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers’’, Colloids and Surfaces A: Physico-chemical Engineering Aspects, vol., 336, pp. 57–63, 2009.

[21] P. Lemougna, U. F. Melo, M. Delplancke, H. Rahier, ‘’Influence of the activating so-lution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash’’, Construction and Building Materials, vol. 48, pp. 278–286, 2013.

[22] S. Egger, ‘’Determining a sustainable city model’’. Environmental Modelling & Sof-tware, vol. 621, pp.1235-46, 2006.

[23] United Nations Centre for Human Settlements Cities in a globalizing world global report on human settlements. Disponible en: http://www.un.org/en/events/paste-vents/pdfs/Cities_in_a_globalizing_world_2001.pdf, 2001.

[24] P. Higgins, J. M. Campanera, “(Sustainable) quality of life in English city locations”, Cities, vol. 28, n° 4, pp. 290-299, doi: 10.1016/j.cities.2011.02.005., 2011.

[25] C. Jingwei ,Z. Ping, W. Xue,’’The Research on Sino-US Green Building Rating Sys-tem’’, Energy Procedia , vol. 5, pp. 1205-1209, 2011.

[26] Qué es huella de carbono. Disponible en: http://www.huellacarbono.es/apartado/general/huella-de-carbono.html.

[27] V. Deventer, J. Provis, P. Duxson, ‘’Technical and commercial progress in the adop-tion of geopolimer’’, Cement Mineral Engeenering, vol. 29, pp. 89-104, 2012.

[28] C. Rees, J. L. Provis, G. Lukey, J. Deventer, ‘’The mechanism of geopolymer gel for-mation investigated through seeded nucleation’’, Colloids and Surfaces A: Physico-chemica. Engeenering, vol. 318, pp. 97–105, 2008.

[29] ¿Qué es zeolita? Disponible en: http://emmexico.com/zeoponiaem.pdf

[30] Z. Zhanga, J. L. Provis, H. Wanga, F. Bullen, A. Reid, ‘’Quantitative kinetic and struc-tural analysis of geopolymers Part 2, Thermodynamics of sodium silicate activation of metakaolin’’, Thermochimica Acta, vol. 565, pp. 163– 171, 2013.

[31] G. Habert, J. B. d’Espinose de Lacaillerie , N. Roussel, ‘’An environmental evalua-tion of geopolymer based concrete production: reviewing current research trends’’, Journal of Cleaner Production, vol. 19, pp. 1229-1238, 2011.

[32] America’s cement manufacturers, How cement is made, Disponible en: http://www.cement.org/basics/howmade.asp.

[33] C. Li, H. Sun, L. Li, ‘’A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements’’, Cement and Concrete Research, vol., 40, pp. 1341-1349, 2010.

[34] G. Kovalchuk, A. Fernández-Jiménez, A. Palomo, ‘’Review: Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II’’, Fuel, vol. 86, n° 3, pp. 315–322, 2007.

[35] C. Rees, J. L. Provis, G. Lukey, J. Deventer, ‘’The mechanism of geopolymer gel for-mation investigated through seeded nucleation’’, Colloids and Surfaces A: Physico-chemica Engeenering Aspects, vol. 318, pp. 97–105, 2008.

[36] “Bauxita”. Disponible en: http://www.ecured.cu/index.php/Bauxita.

[37] W. Hajjaji, S. Andrejkovicˇova, C. Zanelli, M. Alshaaer, M. Dondi, J. A. Labrincha, F. Rocha, ‘’Composition and technological properties of geopolymers based on me-takaolin and red mud’’, Materials and Design, vol. 52, pp. 648–654, 2013.

[38] “Equipos de tratamiento de minerales de aluminio”. Disponible en: http://www.tritu-radorasdemandibula.com/Equipo-de-cantera/de-tratamiento-de-minerales-de-alu-minio.html.

[39] N. Moreno, ‘’Valorización de cenizas volantes para la síntesis de zeolitas mediante extracción de sílice y conversión directa. Aplicaciones ambientales’’, Departamento de Ingeniería de Minas y Recursos Minerales, Universidad Politécnica de Cataluña, 2002.

[40] R. S. Iyer, J. A., Scott, ‘’ Power station fly ash — a review of value-added utilization outside of the construction industry’’, Resources, Conservation and Recycling, vol. 31, pp. 217–228, 2001.

[41] X. Querol, J. C. Umaña, F. Plana, A. Alastuey, A. López, A. Medinaceli, A. Valero, M. J. Domingo, E. García, ‘’Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications’’, Fuel, vol. 80, pp.857-865.

[42] ECOBA, European Coal Combustion Products Association. Disponible en: http://www.ecoba.com.

[43] N. Ranjbar, M. Mehrali, A. Behnia, U. Johnson, M. Zamin, ‘’Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar’’, Materials and Design, vol. 59, pp. 532–539, 2014.

[44] K. Komnitsas, D. Zaharaki, V. Perdikatsis, ‘’Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers ́ ́, Journal Hazardous Materials, vol. 161, pp.760-768, 2009.

[45] I. Lecomte, C. Henrist, M. Li ́egeois, F. Maseri, A. Rulmont, R. Cloots, ‘’(Micro)-struc-tural comparison between geopolymers, alkali-activated slag cement and Portland cement’’, Journal European Ceramic Society, vol. 26, pp. 3789–3797, 2006.

[46] G. S. Ryu, Y. B. Lee, K. T. Koh, Y. S. Chung, ‘’The mechanical properties of fly ash-ba-sed geopolymer concrete with alkaline activators’’, Construction and Building Mate-rials, vol. 47, pp. 409–418, 2013.

[47] C. Villa, E. T. Pecina, R. Torres, L. Gómez. ‘’Geopolymer synthesis using alkaline ac-tivation of natural zeolite’’, Construction and Building Materials, vol. 24, pp. 2084–2090, 2010.

[48] M. M. Radwan, L. M. Farag, S.A. Abo-El-Enein, H.K. Abd El-Hamid, ‘’Alkali activation of blended cements containing oil shale ash’’, Construction and Building Materials, vol. 40, pp. 367–377, 2013.

[49] J. J. Thomas, A. J. Allen, H. M. Jennings. ’’Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage’’, Cement and Concrete Research, vol. 42, pp. 377–383, 2012,

[50] F. Collins, J. G. Sanjayan, ‘’Effect of pore size distribution on drying shrinkage of alka-li-activated slag concrete’’, Cement and Concrete Research,vol. 30, pp. 1401- 1406, 2000.

[51] C. Ruiz, A. Fernández, J. Skibsted, A. Palomo, ‘’Clay reactivity: Production of alkali activated cements’’, Applied Clay Science, vol. 73, pp. 11–16, 2013.

[52] J. L. Provis, J.S.J. Van Deventer, “Direct measurement of the kinetics of geopolyme-rization by in-situ energy dispersive X-ray difractometry’’, Journal of Material Scien-ce, vol. 42, pp. 2974-2981, 2007.

[53] A. Hajimohammadi, J. L. Provis, J. S. Van Deventer, ‘’The effect of silica availability on the mechanism of geopolymerisation’’, Cement and Concrete Research, vol. 41, pp. 210–216, 2011.

Descargas

Publicado

2014-12-30

Cómo citar

Montes Valencia, N. (2014). Cementos Alcalinos: Materiales de Construcción Ecológicos. Revista CINTEX, 19, 109–125. Recuperado a partir de https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/42

Número

Sección

ARTÍCULOS