Desarrollo y validación de un modelo cero dimensional de dos zonas para el análisis de la combustión en motores de encendido provocado

Palabras clave: Análisis numérico, Cinética química, modelo cero dimensional de dos zonas, motores de combustión interna


The growth of the automotive fleet in cities and the imminent depletion of traditional hydrocarbon deposits mean that research in the field of internal combustion engines focuses on generating strategies and developing technologies that allow a reduction in fuel consumption and pollutants emissions. The use of numerical models for simulation is an important tool for both researchers and designers as they allow to approach the performance of the engines under certain operating conditions without incurring in the expense involved in experimental studies and allow analyzing multiple phenomena that occur during combustion that are not easily evaluable from experimental measurements. In this study, a zero-dimensional two zones model which separates the combustion chamber into burned and unburned gases was developed seeking to study the combustion process in ignition engines using gaseous renewable fuel (biogas), using the Law of Wiebe and the chemical equilibrium to simulate the combustion process and the Woschni's semi-empirical correlation for heat transfer. The model is calibrated with information obtained from a high compression ratio (15.5: 1) engine of the combustion and thermal machines laboratory of the University of Antioquia. The main variables of combustion and engine performance (heat release rate, maximum pressure, indicated work, among others) were compared with the results of the model, as well as the emissions generated from CO and NO. There are low errors between the experimental values predicted by the model, with errors less than 10% for the main variables, except for the indicated work, with errors of 27%, and errors between 18% and 49% for the generated emissions, obtaining the highest errors as the degree of load of the motor increases.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Sebastián Heredia Quintana, Universidad de Antioquia

Estudiante de maestría, grupo GASURE Universidad de Antioquia. Medellín, Antioquia.

Andres David Morales-Rojas, Institución Universitaria Pascual Bravo

Docente ocasional, Institución Universitaria Pascual Bravo. Medellín, Antioquia


[1] World Energy Balances 2018. Paris: International Energy Agency, 2018.
[2] S. Ruiz, J. Patino, A. Marquez, and J. Espinosa, “Optimal design for an electrical hybrid microgrid in Colombia under fuel price variation,” Int. J. Renew. Energy Res., vol. 7, no. 24, pp. 1535–1545, 2017.
[3] L. Barrios-Ziolo, J. Robayo-Gómez, S. Prieto-Cadavid, and S. Cardona-Gallo, “Biorremediación de suelos contaminados con aceites usados de motor,” Rev. CINTEX, vol. 20, no. 1, pp. 69–96, 2015.
[4] F. Vargas Álvarez, “Motores estacionarios diesel operados con aceite vegetal crudo de jatrofa y palma,” Rev. CINTEX, vol. 21, no. 1, pp. 45–70, 2016.
[5] IPCC, “Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,” World Meteorological Organization, Geneva, Switzerland, 2018.
[6] J. P. Montoya Gómez, A. Amell Arrieta, and J. Zapata Lopez, “Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence,” Therm. Sci., vol. 19, no. 6, pp. 1919–1930, 2015.
[7] N. N. Mustafi, R. R. Raine, and P. K. Bansal, “The Use of Biogas in Internal Combustion Engines: A Review,” in ASME 2006 Internal Combustion Engine Division Spring Technical Conference (ICES2006), Aachen, Germany, 2006, vol. 2006, pp. 225–234.
[8] J. Cardona Gil, J. H. Gallego Orrego, C. Isaza Roldán, R. Torres Salazar, and D. López Chejne, “Integración de Tecnologías Energéticamente Eficientes en Sistemas de Climatización Operados con Energía Térmica,” Rev. CINTEX, vol. 22, no. 1, pp. 83–96, 2017.
[9] Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, “Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines,” Renew. Sustain. Energy Rev., vol. 69, pp. 50–58, Mar. 2017.
[10] M. Yao, Z. Zheng, and H. Liu, “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines,” Prog. Energy Combust. Sci., vol. 35, no. 5, pp. 398–437, Oct. 2009.
[11] J. Palacio, M. Fulla, and I. Rivera, “Modelo Físico-Matemático para la Estimación del Tamaño de Partículas en Suspensiones Coloidales de Baja Dilución,” Rev. CINTEX, vol. 20, no. 1, pp. 53–68, 2015.
[12] R. Isermann, Engine modeling and control: modeling and electronic management of internal combustion engines. Heidelberg: Springer, 2014.
[13] J. B. Heywood, Internal combustion engine fundamentals. New York: McGraw-Hill, 1988.
[14] G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” presented at the National Fuels and Lubricants, Powerplants, Transportation Meetings, 1967.
[15] J. W. Fox, W. K. Cheng, and J. B. Heywood, “A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines,” presented at the International Congress & Exposition, 1993.
[16] G. P. Blair, Design and simulation of four-stroke engines. Warrendale, PA: Society of Automotive Engineers, 1999.
[17] “JANAF THERMOCHEMICAL TABLES,” Anal. Chem., vol. 61, no. 23, pp. 1327A-1327A, Dec. 1989.
[18] G. A. Lavoie, J. B. Heywood, and J. C. Keck, “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combust. Sci. Technol., vol. 1, no. 4, pp. 313–326, Feb. 1970.
Cómo citar
Heredia Quintana, S., & Morales-Rojas, A. D. (2018). Desarrollo y validación de un modelo cero dimensional de dos zonas para el análisis de la combustión en motores de encendido provocado. Revista CINTEX, 23(2), 25-33.